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Trajectory Sampling for Direct Traffic Observation

N. G. Duffield, Member, IEEEand Matthias Grossglausekssociate Member, IEEE

Abstract—Traffic measurement is a critical component for the state exists along each node on the call’s path. In a sense, the

control and engineering of communication networks. We argue scalability of the stateless IP networks has been bought at the
that traffic measurement should make it possible to obtain the spa- expense of observability.

tial flow of traffic through the domain, i.e., the paths followed by Virtually all traff . ing functi h t
packets between any ingress and egress point of the domain. Most _'r u_a y all ra '(_; englne_erlng unc |0r_15, such as route op-
resource allocation and capacity planning tasks can benefit from timization or planning of failover strategies, rely on an under-
such information. Also, traffic measurements should be obtained standing of the spatial flow of traffic through the domain. For
without a routing model and without knowledge of network state.  example, suppose we observe that some link in the backbone
This allows the traffic measurement process to be resilient to net- ;¢ 4yarioaded. Appropriate corrective action requires an under-
work failures and state uncertainty. We propose a method that al- tandi fwhichi ints the traffic ob d on this link
lows the direct inference of traffic flows through a domain by ob- S an Ing otwhic Ingr(?ss points the traffic observed on this fin
serving the trajectories of a subset of all packets traversing the net- Originates and where it is headed, what customers are affected
work. The key advantages of the method are that 1) it does not by the congestion, and what the traffic mix is; without this infor-
rely on routing state; 2) its implementation cost is small; and 3) mation, effective remedies (e.g., rerouting of part of that traffic)
the measurement reporting traffic is modest and can be controlled cannot be taken [11], [12]. Also, it should be possible to infer

precisely. The key idea of the method is to sample packets based on hat fracti  traffi tering th td in at
a hash function computed over the packet content. Using the same WNat lraction ot traflic entering the measurement domain at a

hash function will yield the same sample set of packets in the entire Certain ingress point traverses each link in the network, for ex-
domain, and enables us to reconstruct packet trajectories. ample to focus on how the traffic of a specific customer flows
Index Terms—Hash functions, Internet traffic measurement, t'rough the domain, and to diagnose which link might be the
packet sampling, traffic engineering. reason for a performance problem experienced by that customer.
Domain-wide spatial traffic information is also a prerequisite
for the establishment of label-switched tunnels [3], or to decide
which potential ingress point is best to connect a new customer
HE efficiency of resource allocation and the quality ofo the domain.
service (QoS) provided by IP networks depends critically We distinguish between direct and indirect measurement
on effective traffic management. Traffic management consigtiethods. Conceptually, an indirect measurement method relies
of short-terntraffic controland longer-terntraffic engineering on a network model and network status information to infer
Traffic control operates on a time scale of seconds and withdbe spatial flow of trafficthrough the domain. For example,
direct human intervention. Examples of traffic control functionsuppose that the traffic is observed only at network ingress
include congestion control, automatic recovery in case of lifloints (e.g., by computing statistics on the distribution of
or router failures, or admission control. Traffic engineeringource—destination pairs). In order to infer how that traffic
operates on time scales from minutes to weeks or months, dlegvs through the domain, timely and accurate information
typically with some degree of human intervention. Its goal @bout the state of the routing protocol and link states has to
to optimally allocate network resources, such as link capacilye available. If assumptions about traffic routing have to be
to different classes of network traffic in order to ensure goovade in order to obtain the traffic flow matrix, then the use of
service quality and high network efficiency. Examples of traffian outdated routing table can lead to erroneous inferences, and
engineering functions include traffic characterization (e.gsuboptimal allocation of network resources.
trending), accounting (e.g., for pricing), and capacity planning More generally, indirect measurement methods suffer from
and provisioning. the uncertainty associated with the physical and logical state of
All of these functions represent feedback loops on a widdarge heterogeneous network [11]. This uncertainty has several
range of time scales and of varying spatial extent teaffic ob-  sources. First, the exact behavior of a network element, such as
servationor measuremeris therefore an integral component ofa router, is not exactly known to the service provider and de-
these functions. The importance of traffic measurement capalpiends on vendor-specific design choices. For example, the algo-
ities is compounded by the fact that IP networks do not maitithm for traffic splitting among several shortest paths in open
tain per-flow state. By contrast, in circuit-switched networksshortest path first (OSPF) is not standardized. Second, there are
the traffic is essentially “observable for free,” because per-caleliberate sources of randomness in the network to avoid acci-
dental synchronization, e.g., through active queue management
disciplines [13] or randomized timers in routing protocols [14].
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domains [18]. Fourth, the interaction between adaptive schentiesatment—the trajectory associated with a multicast packet is
operating at different time scales and levels of locality (e.g., Q@8nply a tree instead of a path. Finally, trajectory sampling can
routing, end-to-end congestion control) may simply be too corhe implemented using state-of-the art digital signal processors
plex to characterize and predict [30]. Finally, with increasinDSPs) even for the highest interface speeds available today.
size and complexity, the likelihood increases for faults and mis- This paper is structured as follows. We define notation and
configurations to disrupt the normal operation of the networkormally define trajectory sampling in Section Il. We discuss the
Often, traffic measurement is one of the potential tools to detaattoice of parameters for the hashing functions, and demonstrate
and diagnose such problems; however, this benefit is mitigatiair statistical properties in Section Ill. We give an example of
if traffic measurement requires correct network operation.  traffic measurement based on an extensive packet trace in Sec-
A directmethod does not rely on a network model and an etien IV. In Section V, we discuss implementation issues and pos-
timation of its state and its expected behavior. Rather, it relies sible extensions of trajectory sampling. Section VI concludes
direct observation of traffic at multiple points in the network. Ashe paper.
such, it does not suffer from the sources of uncertainty discussed
above. In this paper, we describe a direct method for traffic ||. FORMAL DESCRIPTION OETRAJECTORY SAMPLING

measurement, called trajectory sampling. The method sampleftor simplicity, let us describe the scheme assuming that all

packets that traverse each link (or a subset of these links) within D .
. ackets are of siz& bits. We represent the measurement domain
a measurement domain. The subset of sampled packets ovBf%

: : . . a directed grapf(V, E), whereV is the set of nodes and
certain period of time can then be used as a representative of, % ; .
overall traffic. is the set of directed links. Packets enter the measurement do-

. . main at anngress nodeThey traverse several links to leave the
If packets were simply randomly sampled at each link, then 9 Y

we would be unable to derive the precise path that a Sampnn;&asurementdomam at agress nodéor several egress nodes

packet has followed through the domain from the ingress to the he case of a multlca§t packitA packet can potentially be
. . . ; ropped at an intermediate node. WeidgtP;,) denote theon-
egress point. The key idea in our proposal is therefore to base L ) )
: - o . entof a packett at link ¢, i.e., the sequence of bits making up
the sampling decision on a deterministic hash function over the . .
, o e IP header and the IP packet content. When there is no risk
packet'scontent If the samehash function is used throughout L o
) of ambiguity, e.g., when considering a stream of packets at a
the domain to sample packets, then we are ensured that a packet, . )
o T . single link, we refer to a packd? and its content: = z(P)
is either sampled oaverylink it traverses, oron nolink atall. In
. ! interchangeably.
other words, we effectively are able to coll&etjectory samples Consider all the packet®: Py entering the domain
of a subset of packets. The choice of an appropriate hash funcs P N g

. . . . . . ithin a measurement interval of len The trajectory of
tion will obviously be crucial to ensure that this subset is ng gih ) y

- . . . . gacketh is the set of links traversed by pack@. In the case
statistically biased in any way. For this, the sampling proce 5F'a unicast packet, the trajectory is a path from the ingress node
although a deterministic function of the packet content, has?o P ' ) y P 9

. to'the egress node or to the node where the packet is dropped. In
resemble a random sampling process.

) . . the case of a multicast packet, the trajectory forms a tree rooted
A second key ingredient of our proposal is thapatket la- at the ingress node P J y
beling Note that to obtain trajectory samples, we are not inter- Theinvariance functiony is a function of the packet content

ested in the packet contepetr s¢ we simply need to know that. whose output depends of the invariant packet content, i.e., the

some packehas t_raversgd a set of I|_nks. ?ut to know this, it i its of the packet that are not modified upon forwarding, as de-
sufficient to obtain a unique packet identifier, or label, for eac bribed below. An invariance function does not depend, for ex-
sampled packet within thg d°”.‘a'” and wﬁhm a measurem%ple’ on the time to live (TTL) field, which is decremented

period. Because the label is unique, we will know that a packgtt each hop. Without loss of generality, we assume here that

has traversed the set of links which have reported _that part{ﬁé function¢ simply extractsll the S.. invariant bits from the
ular label. We propose to use a second hash function to co{;r;l%—

pute packet labels that are, with high probability, unique withi cket.
a measurement period. While the size of the packet labels obvi- ¢: 10, 115 — {0, 1}5 1)
ously depends on the specific situation, note that labels can in Y ’ '

practice be quite small (e.g., 20 bit). AS the meas_urement tra_ﬁioThe basic idea of trajectory sampling is to decide whether to
that has to be collected from nodes in the domain only con3|§t§mp|e a packeP based on a deterministic function of the in-
of such labels (plus some auxiliary information), the OVerhe%riant packet content(x(P)); we call this deterministic func-

to collect trajectory samples is small. tion thesampling hash functioh, defined as a map
Trajectory sampling has several important advantages. Itis a

direct method for traffic measurement, and as such does not re- h: {0, 115 — {0, 1}¢ )
quire any network status information. The spatial flow of traffic

through the domain can be inferred from trajectory samplés, the invariant packet content intbit binary numbers. A

i.e., paths taken by a pseudorandom subset of packets throgghketp is sampled ifh(p(x)) € D for some giversampling
the domain. Trajectory sampling does not require router state

(e_g_ per-flow cache entries) other than a small label buffer_lstrictly speaking, several copies of a multicast packet could enter the mea-
' urement domain at multiple ingress nodes; for our purposes, we can simply

. . S
The amoun_t of measurement trafflc necessary 'S_ modest Q:_G ider each copy of the multicast packet entering the domain as an indepen-
can be precisely controlled. Multicast packets require no speaiaht packet.
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Fig. 1. Schematic representation of trajectory sampling. A measurement system collectdgizetkétom all the links within the domain. Labels are only
collected from a pseudorandom subset of all the packets traversing the domain. Both the decision whether to sample a packet or not, and thegracket label
function of the packet’s invariant content.

domainD c {0, 1}*. We call the indicator functiohp defined H 8 pi - w

through Em
1, h(p(x D
o) = { ' oivaraee @ P e

thesampling functionNote that we use the same sampling func
tion Ap on each link in the measurement domain. In this wa
a packet is either sampled everywhere on its trajectory or not
all, and the sample data lets us reconstruct the trajectories of T=FHEF
sampled packets.

In principle, a node could send the entire content of a sampl
packet to the measurement collection system. However, this
very inefficient; note that to identify trajectories, we are not in
terested in the content of the packet se we only need aniden- _ || RS TORY _] _
tifier to distinguish a given packet from other sampled packets,
in order to obtain unambiguous samples of packet trajectorié'g- 2. Invariant packet content. The hash functions are computed overasubsgt

. e . of header fields and part of the payload. Variable field change along the path;

Therefore, we use adentification hash functiog to compute

. o low-entropy fields are invariant along paths but vary little between packets; high-
a compact packet identifier on the constant part of the packeéntropy fields and invariant along paths and vary significantly between packets.

. Se m
g:{0, 137 — {0, 1}, “) about a sampled packet (such as its length and its source and

In this way, we only have to send bits per sampled packet perdestination addresses) are required for many measurement pur-
link to the collection station. poses. It is sufficient to collect this additional information once
An alternative of compressing the packet header for use aB&{ sampled packet. For example, ingress nodes could be con-
label is not expected to be effective in reducing label Vo|umggured to I’etl’ieve thIS information along W|th the |abe|S, Wh|le
Effective compression is based on building a dictionary of réll other nodesnly collect labels (cf. Fig. 1).
peated symbols in the objects to be compressed. Such repetition ) .
is not expected to occur in single packets. Reuse of the dictfo- Packet Identity and Invariant Content
nary across multiple packets with common fields (e.g., packetsThe definition of the invariance functiop is completed by
sampled from a flow) would require maintenance of additionadentification of the invariant packet content. Here we consider
state in the router. Moreover, label size may not be easy to camly packets in IP version 4. In Fig. 2, we illustrate the fields of
trol. By comparison, use of a label hash is simple, stateless, dhd IP packet header and the packet payload. We divide the fields
provides fixed length labels. into three categories: 1) variable fields, i.e., those which change
In its most basic form, trajectory sampling performs the follong a packet’'s path; 2) low-entropy fields, i.e., those which
lowing simple operation at each link in the domain: for eachre invariant for a given packet along a path, but have little or
observed packet of content if hp(¢(x)) = 1 then send the no variation from packet-to-packet; and 3) high-entropy fields,
label g(¢(x)) to the measurement collection system. While thiwhich are invariant for a given packet along a path and can also
suffices to identify packet trajectories, additional informatiomary greatly between packets. The invariant packet header can
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then be taken as the set of high-entropy fields. The low-entro| O @
fields could also be included, but this would add scant stati
tical variability to the invariant packet content, and would re
quire additional processing time when calculating the samp
and labeling hash. D)
We now comment in more detail on the properties of the sp @) o )

cific fields. The variable fields are the TTL (bits 64—71) which

is decremented per hop, and trer8ICE TYPE field (bits 8—15)

since certain of its bits may be changed in transit, e.g., during E

plicit Congestion Natification [21], and by operation of Differen-

tiated Services [4]. The EhDER CHECKSUM (bits 80-95) is re-

calculated onchanges of each of these and hence is also varial ¢) )

Low-entropy fields are the ERsION (bits 0-3), HEADER

LENGTH (bits 4-7), and RoTtocoL (bits 72—79). These are
either constant or take one of a small number of values.
The remaining fields are taken to be of high entropyuSce
AND DESTINATION IP ADDRESS (together bits 96-159) are
included in the invariant packet content. We also include th
IDENTIFICATION field (bits 32-47). EAGs (bits 48-51) and e) )
FRAGMENT OFFSET (bits 52—-63) are likewise mutable through
fragmentation. Indeed, fragmentation raises potentially a larc
issue, since it provides a mechanism by which the notion
a single identifiable packet becomes corrupted. However, \
expect fragmentation to by confined to the network edge, wi
an edge-to-edge notion of packet identity remaining valid, eve9) )

in cases where it is invalid end-to-end. In this case, we can . o _
include TOTAL LENGTH, FLAGS, and FRRAGMENT OFFsETwithin  Fi9: 3. Trajectory disambiguation. Examples of unambiguous (a—e) and
. . ambiguous (f-h) label subgraphs. For (e) and (g), a packet is dropped at an
the |nvar|ant Content interior node.
The remainder of the packet following the first 20 bytes com-
pletes the invariant packet content. In certain IP options packe;k;ayS be inferred unambiguously. Intuitively, this is because a
such as packets with a record route option, these following by S '

h hob by hob. H ) h K cket is either sampled everywhere in the domain or nowhere.
may change hop by hop. HOWEVET, SInce such pac etsarer ﬁus, if we observe labelon exactly one inbound and one out-
we believe the effect on sampling can be ignored.

bound link of a node, it must be the same pacék®y. induction,
_ _ _ the entire trajectory can be reconstructed without ambiguity.
B. Ambiguous Trajectories Second, let us consider the case where the label subgraph is

We discuss how to infer trajectories from the labels collectdfe superposition of several trajectories. A few examples of su-
from the network over a measurement period. The measurem@fPositions of two trajectories are given in Fig. 3. The examples
periodT”is chosen as an upper bound of the packet lifetime (e.{2) through (e) are unambiguous, while examples (f) through (h)
10 s). We assume that all the packet observations made witfl§ ambiguous.
the same measurement period can only be distinguished by theifhe following property holds: a label subgraph is unam-
label, not by their arrival time within the measurement perio®iguous if each connected component of the subgraph s either 1)
As labels are allocated pseudorandomly to sampled packé§ource tree, or 2) a sink tree such that for each node on the sink
their is obviously a chance t#bel collision i.e., of two or more  tree, the degree of the outbound link is the sum of the degrees of
packet trajectories having the same label in the same meastfiginboundlinks. Note that example (e) is unambiguous because
ment period. The question we address in this subsection is unti§ only connected component is a source tree; it is also a sink
what circumstances we can disambiguate these trajectories free, but the degree condition does not hold.

It is useful to introduce the concept ofabel subgraprasso-  Also note that ambiguity as defined here pertains only to the
ciated with a label and a measurement period. The label suf@jectoriesfollowed by packets. For example, example (e) is
graph is simply the graph of the network domain, where eatihambiguous because there is no ambiguity about the two tra-
link is annotated with the number of times labélas been gen- jectories followed by the packets. However, if we have collected
erated by that link in the measurement period; links with zeR$her attributes of the two packets (at the ingress node, say), then
are deleted. A label subgraph basically represents the supeiyghave no way of knowing from (e) which packet was dropped
sition of all the trajectories in the measurement period that hitthe middle, and which one made it to the egress node. In con-
this label. trast, there are several possible sets of trajectories that can result

We restrict this discussion to unicast packets and to acydiitthe label subgraphs (f) to (h).

label subgraphs. First, no.te that in. the trivial case where a labeye yiew packets generated by routers (e.g., routing updates) as coming from
subgraph stems from a single trajectory, that trajectory can akirtual ingress node connected to that router.

SIS
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In summary, a label can be attributed to its trajectory 1) if th '’
label is unique, or 2) if it can be disambiguated. Obviously, th
probability that a label of some trajectory can be disambiguat:
depends on the network topology, and the traffic rates on all t!
other trajectories. Therefore, the numbeundmbiguousabels
onatrajectoryisingeneral abiased estimator of the trafficrate
that trajectory, and it is necessary to renormalize rate estimat@
after disambiguation. Another way to avoid bias is to simply disg
card all duplicate labels, regardless of whether tmyldbe dis-
ambiguatedornot. Thisissimple, butincurs someloss of sampl:

107" E

r
1

107}

fraction of coll
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In this section, we study the performance of trajectory san
pling. Our overall goal is to obtain as many pseudorando
trajectory samples from the network as possible, without usir -+ . . . s ‘ . . , ‘

too many resources (network bandwidth, collection syste 2 * ® ¥ ¥ et % *® 0%

memory)' In this paper, we demonstrate hashes based on TT]QQ'4. Packet collisions. The fraction of packets whose prefix is not unique,
ular arithmetic (see, e.g., [17]), and show that the parametersh function of the prefix length The smallest value for the prefix length
this scheme can be chosen such that the hashes appear stdfi@tiytes) corresponds to using only the packet header.

cally independent from the original packet content, thus enabling

unbiased sampling We then compute the optimal choice of theﬁ Identical Packets

total number of samples to be collected from the network and thé

number of bits per sample, subject to a constraint on the networkAs hashing is a deterministic function, if two packets are ex-

bandwidth available for traffic measurement. actly identical, then the sampling decision and their label will be
identical as well. Therefore, identical packets are not sampled
A. Specification of Hash Functions pseudorandomly by our method, which can lead to biased esti-

mators. We therefore have to convince ourselves that identical
packets are rare in practice. We call the occurrence of identical
packets in a traceollisions

. More generally, we are interested in the frequency with which
M) = ¢(z) mod A ©®) a prefix of a certain length (i.e., the first! bytes, with the
variable fields masked out) of a packet is not unique within a
large set of packets. If we can identify a packet prefix length

The modulust is chosen in order to avoid collisions arising fron{O" Which collisions are rare, then it is sufficient to compute the
certain structural properties of the packet contents. For exampigPling and the identification hash over this prefix. In a sense,
we expect to find complementary sets of packets in which soufdl§ Prefix generates sufficient “entropy” to make the sampling
and destination IP addresses are interchanged, arising from@fd labeling processes look random. =

two-way flow of traffic in TCP sessions. The hash function, and e have computed the number of collisions in a trace of one
hence the modulus, must be chosen to avoid collisions in whicA4!lon packets, as a function of the packet prefix length; see
pair of packets that differ little by such aninterchange are mappEl§- 4- (The trace used is described in more detail at the start of
onto the same remainder. Knuth (see [17, sec. 6.4]) formulate§'g nextsection.) Itis clear thatrelying only on the packet header
condition for avoidance of such collisions, namely fffat- o = 1S not sufficient for trajectory sampling to work well, as iden-

0 mod A for smalla, k whereg is a radix of the alphabet usedtical headers appear too frequently£ 20 bytes). However,

to describe the header. Includiply = 232 in this criterion sup- increasing the packet prefix length to take into account a few
presses collisions of the type described above. Moduli obeyiRytes of the payload quickly decreases the collision probability
these conditions can be selected from tables of primdster- {0 below10~2. Increasing the packet prefix length beyond about
mines the granularity of sampling; must be chosen sufficiently 40 bytes does not reduce collisions any further; the remaining
large in order that the smallest available sampling rate, naméBllisions are due to packets that are indeed exact copies of at
1/Aforr = 1,is sufficiently small. least one other packétowever, collisions are sufficiently rare

Sampled packets are encoded using a similar hash functid@ be inconsequential.

We regard the ordered bits of a packeand of its invariant
part¢(x) as binary integers. We use the sampling hash

and samplingdomai® = {0, 1, ...r—1}, for positive integers
Aandr. Thus a packetis sampledfif+) mod Aislessthan.

g(¢(z)) = ¢(x) mod B (6) C. Evaluation of Hash Functions

. . , L We explored the statistical properties of hashing algorithms
with the modulgsB £ Ain orderthat the identification hash beOn packet traces. The traces were gathered usingdpeunp
uncorrelated with packet sampling.

utility [16] on a host attached to a local area network segment
3Clearly other choices of hash function are possible provided they satisfy suit-

ably strong randomization properties. Candidates include message digestingye note that the majority of these residual collisions are due to TCP dupli-
e.g., MD5 [22], and universal hashing; see [29]. cate acknowledgment packets, which are indeed exact copies of each other.
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Except in one case, the traces involved traffic between abc®

formed on four traces each comprising one million IP packetz ™" [ \
500 distinct campus hosts and about 3000 distinct externalho: 45 |

The exception was a trace of a single ftp session set up betw: \

two campus hosts. N
The hash functions were implemented in 32-b integer aritl 2 — .01 o1 p

metic by long division over 16-b words. Thus, a given numbe thinning factor

z2 = (Zh Zhe1y -y 71) = Yoro22'% has its modulus

z mod A calculated through iteration of Fig. 5. Hash-sampled address distributions. Confidence 1&V€E) from

chi-squared statistics of sampled address distributions as a function of thinning
factor. In all cases, the sample distribution is consistent with that of full trace
(zk, Zhe1s ++ s zo) mod A down to a 80% confidence level. Sampling hash is calculated on a 40-byte

= (211 +2'%(2x mod A), ..., 20) mod A. (7) packet prefix.

Since the word size is 16 bits,_; +2'6(z, mod A) fits within Address Prefix DistributionsPackets were binned on ad-
a 32-bit unsigned integer. - dress prefix. The sampling hash was calculated using a 40-byte

A desirable property of sampling hash is that packet Salﬂ@cketprefix. Increasing the packet prefix for the sampling hash

pling should appear independent of a proper subset of the pa&fe\fon‘_j this point does not decrease the freq_uen_cy of collisions
content. Consequently, the distribution of any variable attribuf&8€ Fig. 4), so we expect no further reduction in dependence

of the packet (such as source or destination IP address) sh&ﬁ&’veen sampling hash and packet address.. i
be the same for sampled packets as for the original populationj”_1e e_xpgrlments reported here used a f|>_(ed length 8-bit
ix, yieldingI = 28. We amalgamated binswith expected

We now perform tests of the independence hypothesis, based){'fﬁf

chi-squared statistics calculated from the samples and the Oﬁggupatl(_)nsmli < 1in order to avoid underemphasizing
inal traces. contributions toZ’, which could otherwise lead to optimistic

Consider a given attribute of the packet (or set of packet@Fceptance of the null hypothesi©f 80 bins occupied in the
e.g., destination IP address. Partition the range of attrib I_tgrac.e, nearly half remained occgpled ata th|.nn|.ng factor of
values seen in the full trace into a numbeof bins, withn;, 10 - Fi9. 5 showsC(T’) as a function of the thinning factor
values falling in bini, there being: = >2° n; packets in /4 using modulusd = 16979. In all casesC(I) was less.
total. Suppose thah; of the samples have attribute in bin than 0.8; thgs_the .sampled and full .trace add_ress distributions
there beingn; = 3", m1; samples in total. Likewise, there arecannot be distinguished a}t 80% or higher confu_jenpe level.
mo; = ni—my; unsampled packets in bipwith mg = n—m; We repeated the_experlments for two other binning schemes:
unsampled packets in total. We form the 2-byontingency 1_) _f'Xe_d '6”9“” 16-bitaddress prefixing; and_2) BGPad_dress pre-
table of bin occupancies shown in Table I. fixing in Whl(_:h addresses are allocated to bins accor_dmg to their

The chi-squared statistic for Table I is longest prefix match on a snapshot of the BG_P routlng_table. In

both these cases, there were roughly 1000 bins occupied by the
1T N full trace. The confidence leve{s(T") were lower than those re-
T= Z Z w (8) ported above, i.e., the independence hypothesis would be more
i=0 j=1 mij readily accepted.
Bitwise Address Distributionslet x;, denote thé:th packet
wherem;; = m;n;/n is the expected values af;; under the in a stream, and(#) its #th bit. For each bit positioAwe con-
null hypothesis that the bin occupied by a given packet is indetruct the 2-by-2 contingency table in whigh;; is the number
pendent of whether or not it is sampled. For a given confidenge packetsk: for which the sampling functiohp(é(zx)) = 4
level c (say,c =95%), we accept this hypothesislif< 7., the and the/th bit is z;,(¢) = j. We calculated the corresponding
cth quantile of the chi-squared distribution with- 1 degrees of chi-squared statisti@’ for each address bit, using each of two
freedom. Equivalently, we accept@(T’) < ¢, where theC'is  traces, three distinct prime$ = 1013, 10037, and 16979, and
the cumulative distribution function of the chi-squared distributhinning factors: /A between approximately0—/2 and10~*,
tion with I — 1 degrees of freedomWe applied three variants all hashing on a 40-byte packet prefix. According to the null
of this procedure in order to test the independence hypothesig/pothesis, each sudhshould follow a chi-square distribution
with one degree of freedom. We summarize these statistics in

5Chi-squared and related statistics are evaluated as discrepancy metricd=igr. 6 through a quantile—quantile plot of tievalues against
sampled network traffic in [9], [20], [32]; the latter paper discusses optimization
of bin sizes for ordinal data such as interevent times. 6See [24, sec. 4.3] for treatment of small expected occupations.
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12

20 byte packet prefix — We obviously face two conflicting goals for the choicerof
At prckatprefy - andm. On the one hand, the reliability of traffic estimates in-
creases with the number of unambiguous samples we can col-
lect. On the other hand, we have to limit the total amount of

. measurement traffic between the routers in the domain and the
collection system. Note that the amount of traffic incurred over

a measurement period is given byn bits, because am-bit

label is transmitted to the collection system for each of+the
samples (ignoring packet headers for the measurement packets
and other overhead).

We therefore formulate the following simple optimization
problem: we want to maximize the expected number of unique
(unambiguous) samples, subject to the constraint that the total
measurement traffiarn must not exceed a predefined constant
c. We assume that each sample independently takes one of
Fig. 6. Hash-sampled address bits distributions. Quantile—quantile plot €/ 1abel values with uniform probability = 1/M. The
address bit chi-square values versus chi-squared distribution with one degrearginal distribution of the number of samples taking a given

of freedom; for various traces, primes thinning factors-/A; see text. Close label is binomialB Hence. the probability that the label
agreement for 40-byte packet prefixes; marked disagreement for 20-byte pacﬁ‘et (n, p ) ' P Y

0 2 4 6 8 10 12

prefixes (i.e., no payload included for sampling hash). IS generated exactly once in the domain with the measurement
period is
this chi-square distribution. This shows close agreement; the Py =np(l —p)" 7t 9)

plot is similar to that obtained using randomly generated sta- . o

tistics from the expected distribution. For comparison, we al$&t Zi be the random variable that takes the value 1 if label
show quantiles obtained with a 20-byte packet prefix, i.e., usit@ken by exactly 1 sample, and 0 otherwise. The mean number
only the invariant header for sample hashing. In this case, th&f¢inique samples is then

is poor agreement, with many highvalues, presumably due to M M
the increased frequency of collisions. U(n, m) =E Z Zi| = Z E[Zi] = Mp, = n(1 —p)*
Temporal Sampling DistributionsFor a trace of a single ftp im1 im1

session between two hosts, we check that the packet sample (10)_
process is consistent with that of independent sampling \#pereE denotes the expected value under the assumed uniform
the average sampling rate. We allocate packets into onel&pel distribution. Forfixed, U(n, m) is obviously maximized
two bins, according to whether the succeeding packet in tf m = ¢/n, and we therefore maximize

session is sampled or not. This results in a 2-by-2 contingency _ —e/nyn—1

table in whichm;; is the number of packets for which the Un) =n(l -2 > (11)
sampling fUnCtiome(d)(.’L'k)) = 4, while that of its successor so|ying77/(n) = 0 yields the maximizing:*, wherel’(n) is
is hp(¢(zr41)) = j. According to the null hypothesis, thethe derivative of/(n), namely

statistic7” follows a chi-squared distribution with one degree

of freedom. We performed a number of experiments using_c/n (1_2—c/n)n_2 [QC/n+c¢(n/c)_1_n — 1clog(2)L
)

A = 2377, thinning factors betweet0!/2 and 10—, and n
packet prefixes of 50 bytes or larger. In each experiment, we a

were able to accept the hypothesis at the 95% confidence leVéierey(z) = z(2!/* —1)log(1-271/%). We can show that the
equationU’(n) = 0 has a unique positive solutioti. This is

becaus@®/™ + cip(n/c) is a decreasing function af € (0, o)

) . with range(—oc, o), while14(n—1)/ne log(2) is increasing
We next discuss the choice of the number of sampksd the i, range(—oo, 1+ ¢ log2). Hence, the second factor in (12)

number of bitsn per sample. For convenience, weldt= 2" 41 e zero at only one stationary poirit > 0. Furthermore,

denote the alphabet size of the identification hash. U(n) — 0asn — 0andn — oo, S0 sincel/ is positive and

Based on the discussion in Section 1I-B, if two different trazontinuous, the stationary point is a maximum.

jectories happen to use the same label, then they may or mayys can establish the bounds < n* < n. where
not be ambiguous. The probability that we get an unambiguous

D. Optimal Sampling

sample of a trajectory depends on the statistical properties of N — M (13)
all the other trajectories that might interfere. This is difficult to * Tlog(1 + M* —log(1 + M*))

analyze. However, we are able to obtain a lower bound on the M*

number of unambiguous labels. For this purpose, we assume = « _ Mr  log(2ny (14)

that the label subgraph is ambiguous whenever there is a label
collision. In other words, we disregard the cases discussedanhere M* = ¢ log 2. The upper bound arises because, since
Section II-B, where several trajectories with the same label caz) < 0 for is greater than: > 0, »* is bounded above by
be ambiguous. the solution:’ to the equatio2”™ = 1+ clog(2)(n’ —1)/n'.
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5 10 Expected number of unique sampes U(e) and optimal n=n , domain consists of 100 OC-192 links (10 Gb/s each). Suppose

the measurement system can handle 10 Mb/s of incoming label
traffic for the entire domain. Furthermore, we choose a mea-

|/ surement epoch to HE = 10 s; this is a conservative upper
bound on the lifetime of a packet traversing the domain. For
simplicity, we assume that all packets are 1500 bytes long.

The bound on the total amount of measurement trafficis
T x 10 = 10® bits. The number of samples we should collect
1 over the measurement periodis = 3.84 x 10%, or about 3840
samples per link per second. A fully loaded OC-192 link can
carry abouts.33 x 10° 1500-byte packets per second. There-

1 fore, we would configure the sampling hash in this domain so
that the sampling probability for a packet would be approx-
imately 3840/(8.33 x 10%) ~ 1/217. The labels would be
05| 1 m* = log, (M™*) = 26 bits long. The actual number of samples
. . n will obviously depend on how heavily each link is loaded. The

1 2 3 4 5 6 7 8 ° 1o main point of the above analysis is to allocate enoughvhits
' labels such that under peak load, the collision probability does
Fig. 7. The expected number of unique samfiés) as a function of2, for  NOt become too high. Note that if the average packet size is less
c ; 10° Tt-l ;Zeb?ftigagggm?ﬁ; ?;fo i?sqér;:e&ioisa%%ﬁroxin;staelxé}éiir-nﬁzi than 1500 bytes, we simply have to reduce the sampling prob-
\éYIO?g?i.e_., 7.2% of rt)he sambles transmitteg to the cgﬁ(g::tionzzstem hav)é to llity accordingly (e.g., by re_duun@' However, the number
discarded. of samples:* and the label sizen* are not affected, as they
depend only orz.

We conclude by describing how the relations between the
maximum mean number of unique samplés = U(n*), the
corresponding label sizeo*, the and the transmission volume
constrainte, can be exploited for dimensioning the sampling

n is in turn bounded below by the solutier to the equation
2¢/7" = 14 ¢log 2. But then since* > n’_, we haven’ < n,
the solution ta2°/"~ + eip(ny /c) = 1 + clog(2), as given in

(14). . system. For large, these relations are as follows:
From these bounds, we can approximatehrough the large
M™* asymptotic . log(clog?2)
m log 2
M and
o~ M* : 15
" log M*’ - (15) Ut C log 2 exp(—1/log(c log 2)) (17)

i imation i log(c log 2)
This approximation is good even for only moderately lakgg,

due to the slowly varying nature of the logarithm function.  asc — co. Note that each of the quantitiesm* andU* deter-
Although we havelefinedM * = ¢ log 2, the notation is con- mines the other two. For examplg? is an increasing function
sistent in thatM* is, asymptotically, the size of the alphabebf ¢, and hence given a target number of unique lab&lsone
used to represent the maximizing number of unique samplean determine numerically the minimum capacitgnd label
This is because the corresponding label size is the lowest gize m* required. As an application, suppose that we wish to

teger greater than or equalt@® = ¢/n* ~ clog M*/M* = sample during a period of duratianfrom a link that carries
log M*/ log2, asM* — oo. packets at rate, and for the expected fraction of unambiguous
We compute the sample collision probability at the optimahbels from the sampled packets to peSettingU* = fAr
operating point. above enables us to determine the minimum label hashisize
and measurement traffic rat¢r required from that link.
U(n*) AN
o = 1- :1—(1—2—0/")
Peolt n* IV. TRAFFIC MEASUREMENT
~ 1 e /M log2) (16) Inthis section, we use trajectory sampling for a simple mea-

surement task. The goal of this experiment is to illustrate how
Fig. 7 illustrates how: = n* maximizesU(n): for n < n*, estimators can be constructed based on the sampled labels re-
collisions are very rare—we waste label bits for too few sanceived from the measurement domain. We study the following
ples; forn > n*, collisions are too frequent—we waste samplesimple scenario. Assume that a service provider wants to de-
through collisions because label identifiers are too short. Ndermine what fraction of packets on a certain backbone link be-
that the optimald/* can obviously not be achieved exactly. Ifongs to a certain customer (cf. Fig. 8). To estimate this fraction,
practice, we choose the largest integerK M™* satisfying the the service provider can rely on the labels collected from the
conditions put forth in Section IlI-A. . _ o _ _
Let look at a specific example that illustrates havand We do not discuss distributed implementations of the measurement collec-
etus p ’ p tion system in this paper, but the potential of distributed measurement pro-
n would be chosen in practice. Assume that the measuremesssing to increase the amount of measurement traffic is obvious.
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Fig. 8. Measurement experiment. A simple experiment where labels from t
links are compared to estimate what fraction of traffic on the backbone lit

comes from the customer access link.

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 9, NO. 3, JUNE 2001

Real and estimated fraction of packets with specific source prefix (¢=1000 bit)
04r
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o
&

e
&
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05 . | \ . . \ . . )
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measurement period

backbone link and from the access ||nk(s) where the Custonﬁ:&]’. 9. Real and estimated fraction of customer traffic. #ex 1000 bit for

connects to the network.

this link (M * = 693.1, B = 691, n* = 100).

For the purposes of experimentation, we adapt the Pac!geal and estimated fraction of packets with specific source prefix (c=10000 bit)

trace used in the previous section to the present context
follows. All packets with a certain source preftk are desig-

nated as originating from the reference customer, while tl °®
remaining packets are assumed to be background traffic frc
other sources. Similarly, only packets with a certain destinati
prefix D are assumed to cross the backbone link, while tt,

remaining packets are not routed over that link.

For the sake of this experiment, the details of the topology
not matter. To estimate the metric of interest from the collectg °2
labels, we proceed as follows: any label that appears more tt™

once in the entire measurement domain is discatd&chong

the remaining unique labels, we determine which labels are ol
observed on the backbone link, and which labels are observec 1
both links. This allows us to obtain an estimate for the fractic

of customer traffic on the backbone link, given by

fled (18)

y

fi =

0.4r

-+ actual fraction
—¢ sampling-based estimate
~©~_confidence interval

0.3

[+

0.251\

of traff

c
o

0.15

0.05 L L L L L L L
1 2 3 4 5 6 7 8 9 10

measurement period

Fig. 10. Real and estimated fraction of customer traffic. &#ef 10 kbit for
this link (M* = 6931.5, B = 6917, n* = 782).

wheren, , is the number of unique labels observed on both the ) ) )
customer access link and on the backbone link, whjlés the  The confidence interval we plot [ — o, /i + ], i.e., one stan-
total number of unique labels observed on the backbone linkdard deviation around the estimated value.

Figs. 9 and 10 compare the estimated and the actual fractiodNote that the amount of measurement traffic per measure-
of traffic on the backbone link, for ten consecutive measurent period from the backbone link & nm) is quite small
ment periods. For simplicity, we have defined a measuremdAf00 bitsin Fig. 9and 10 kb in Fig. 10). The confidence interval
period as a sequence o8> consecutive packets in the tracels reduced as the amount of measurement traffic increases.
rather than as a time interval. The graph also shows confidencé Statistical estimator such as the one considered here re-
intervals around the estimated values. The confidence interi§ on an underlying random sampling process. The size of the
are obtained as follows. We compute the standard deviationc@nfidence interval is then a consequence of the central limit
the estimatoyi assuming that each packet gets sampled ind&eorem for independent random variables. However, trajectory
pendently and with equal probability. If this is true, then th&ampling is based ondeterministicsampling process, and the
probability that a sampled packet belongs to the customer issampling decision for a packet is a function of this packet's

The standard deviation of the estimafois ther?

p(1 — )
gy )

o=

(19)

content. Nevertheless, we observe in this experiment that the
true value of the estimated quantity lies within or very close to
the confidence interval without exception. This is despite the
fact that there is strong correlation between the packet con-
tent (because the customer packets all have the same source

8This is to avoid bias in the estimators, as discussed at the end of Section IB€efiX) and the events we are counting (packet belongs to cus-

9The variance of a Bernoulli random variable with mesis p(1 — p).

tomer). This correlation does not translate into a biased sam-
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Fig. 11. Implementation. A possible implementation of trajectory sampling computes both the sampling and the identification hash concumenihe and

fly. This removes the need to make a separate copy of each packet. The computation of the two hashes, defined in (7), can be implemented withrghe elementa
multiply-and-add (respectively, divide-and-add) function supported in off-the-shelf DSPs. A small buffer stores labels before they aréocapidtpacket and

sent to the collection system. Some additional logic would be necessary on some nodes (probably on slower ingress nodes) to extract otharéstdsoofi int

a packet, e.g., length, and source and destination addresses.

pling process here. This demonstrates that good hash functionds an example, a state-of-the-art off-the-shelf DSP can process
can sufficiently “randomize” sampling decisions such that thgp to about 600M 32-bit multiply-and-accumulate (MAC) opera-
set of sampled packets (and their labels) are representativeiarfis per second. This corresponds to a raw data rate of 20 Gbit/s.

the entire traffic for the purpose of statistical estimation. Also, raw memory I/0 bandwidth can be up to 256 bit per memory
cycle, which correspondsto 77 Ghit/s at 300-MHz clock speed. In
V. DISCUSSION comparison,an OC-192interface (the fastestcommercially avail-

able SONET interface) carries 10 Ghit/s.
While these arguments are based on peak processor perfor-
We argue that the implementation cost for trajectory samplifgance, which typically cannot be sustained for various reasons
is quite acceptable even for the highest interface speeds avgilich as pipeline stalls in the processor), these numbers do illus-
able today. Trajectory sampling requires a device for each int@fate that the computational requirements necessary for trajec-
face capable of: 1) computing the sampling hash and makingoy sampling are within reach of current commodity proces-
sampling decision and 2) computing the identification hash fgpyrs. It is also interesting to note that the price of such a pro-
the sampled packets. cessor is roughly two orders of magnitude lower than that of an
The computational cost is obviously dominated by th@c-192 interface card. Adding logic for trajectory sampling to
operations that have to be executed for each packet that gagfh-speed interfaces would therefore be comparatively cheap.
through this interface (as opposed to operations only on saf)so note that to add measurement support to interface cards is
pled packets). In our conceptual description of the samplifygline with the trend over the last few years to move processing
process, we have viewed computation of the sampling and {h&ver and functionality from the router core to the interfaces.
identification hash as sequential. The identification hash woulde expect the relative cost of the sampling logic with re-
only be computed if the packet is to be sampled, otherwise t§§ect to the interface hardwaper seto evolve in our favor.
packet is discarded. However, from an implementation poip fact, it appears that processor performance increases slightly
of VieW, this is Undesirable, as it would require buﬂ:ering eaqiaster (doub“ng every 18 months according to Moore’s |aw)
packet until the sampling hash is computed. than maximum trunk speed (doubling every 21 months) [23].
An alternative implementation illustrated in Fig. 11 comf these trends persist, then the cost of incorporating trajectory
putes both the sampling hash and the identification hash f4mpling into the next generations of high-speed interfaces can
both packets concurrently and on the fly as the bits come i expected to be negligible.
The hash functions discussed in Section llI-A allow such anyye address the issue of packet encapsulation for tunneling.
implementation. This removes the burden of having to maker@e presence of tunneling will impact packet identity through
separate copy of the packet for the purpose of computing &capsulation behind a tunnel header. If tunnel endpoints are
identification hash. The processor computes both hashes, @gffined to the network edge, then one can simply sample con-
simply writes the identification hashinto the label store if the sistently in the network interior. Otherwise, in some types of
sampling hasth is equal to one. The label store accumulatg§gnnel the original header could be recovered from the tunnel
packet labels until it reaches a predefined size, then sends [S'&?bad through appropriate offsetting; see, e.g., IP in IP Tun-
labels to the measurement system as a single IP p&cket.  neling [26] and multiprotocol label switching (MPLS) [6]. In
10This should be done reliably (e.g., using TCP) in order to avoid loss the case of MPLS, tunnels (label-switched paths) can be nested
samples during congestion, and therefore possible bias in traffic estimators by prepending the packet with several stacked labels [28]. The

A. Implementation Issues
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bottom label is identified by Bottom-of-stacRag. As the labels pecially true in the presence of large numbers of short flows,
are of fixed size, the logic to eliminate labels until this flag is ersuch ashttp-get  requests. Also, the measurement traffic is
countered would be very simple. This approach lets us matchhgrd to predict. It depends heavily on the way the router iden-
samples inside and outside the tunnel. tifies individual flows, which in turn depends on various con-
The link sampling device also requires a simple managemeérdl parameters (such as the degree of aggregation of source
interface to enable/disable packet sampling, to tell the deviaad destination addresses), the traffic mix (protocols), and the
where to send measurement traffic, and to set the parametashe size. A further complication may arise if traffic measure-
of the hash functions. A simple network management protoaolents are to be used for real-time control functions. Since a flow
(SNMP) management information base (MIB), indexed by thecord is usually generated only upon a flow’s completion, this

IP address of the interface, could fulfill this function. implies that an on-line statistic may miss a long-lived flow that
has not yet terminated.
B. Comparison with Other Approaches A full path matrix over the domain can be obtained if flow ag-

We next discuss several common measurement approacglrggat'on measuremen.ts are available at each '”gre?m“’”.‘
’%‘we know how the traffic is routed through the domain. While

for IP networks and put them into perspective in light of the "~ .
points we made in the introduction. There are two gene is is currently the only approach we are aware of to obtain a

classes of measurement approachsgregation-based ap- ull traffic matrix in IP networks, it has several drawbacks:
proachesare deterministic functions of the observed data. They * Emulation of routing protocolsEven for nonadaptive
usually compute the sum or the maximum of some metric over ~ routing, we have to rely on emulation of the routing pro-
the dataset (e.g., the sum of packets traversing a link during tocol to correctly map the ingress traffic measurements
an interval, or the maximum end-to-end round-trip delay for a  ©onto the network topology; this requires full knowledge
set of packets)Sampling-based approachestract a random of the details of the routing protocol as well as its config-
subset of all of the possible observations. This sample subset uration.

is supposed to be representative of the whole. The law of large * No verification:As mentioned before, one important role
numbers asserts that reliable estimators of desired metrics Of traffic measurement is in the verification and trou-
can be constructed from these samples. The first two methods bPleshooting of routing protocols and policies; obviously,
we discuss, link measurements and flow aggregation, are routing emulation precludes detecting problems in the
aggregation-based. The third method, end-to-end probing, is actualrouting, e.g., due to protocol bugs.
sampling-based. « Dynamic and adaptive routinddynamic routing (routing

Link Measurements (Aggregation-Based, Diredt):this ap- around failed links) or adaptive routing (load balancing
proach, aggregate traffic statistics are measured on a per-link across multiple links/paths) further complicates emula-
basis, and are reported periodically (e.g., every five minutes). tion, because precise link state information would have to
Metrics typically include the number of bytes and packets trans- ~ be available at each time (note that widely used routing
ferred and dropped within a reporting period. Some of these sta-  Protocols such as OSPF have some provisions to balance
tistics are defined as part of the SNMP MIBs [27]. load among several shortest paths in a pseudorandom

The limitation of this approach is that some information is  fashion; this would be impossible to emulate exactly).
lost in the aggregation; therefore, it does not allow to classify Active End-to-End Probes (Sampling-Based, Indiredt):
the traffic (e.g., by protocol type, source or destination addresisis approach, hosts (endpoints) connected to the network
etc.). More importantly, it is not possible in general to infer spaend probe packets to one or several other hosts to estimate
tial traffic flow, i.e., to infer what path(s) the traffic follows be-path metrics, such as the packet loss rate and the round-trip
tween an ingress and an egress point. As such, this approdelay [5], [1], [2]. In a variation of this approach, hosts do not
is better suited to detect potential problems, manifesting itselftually generate probe packets, but they collect and exchange
through link congestion, than to actually analyze the problemeasurements of the traffic of a multicast session (e.g., RTCP
and modify routing information to remedly it. [25]).

Flow Aggregation (Aggregation-Based, Indirectin this This approach gives direct measurementsraf-to-end path
approach, one or several routers within the domain collesharacteristics, such as round-trip delay and packet loss rate;
per-flow measurements. A flow comprises a sequence @ér-link characteristics have to be inferred. This approach can be
packets with some common fields in their packet headeiewed as an alternative way to obtain per-link aggregate mea-
and which are grouped in time [8], [19]. The router has tsurements. Its advantage is that it does not require any measure-
maintain a cache of active flows.A flow record may include ment support from the network. It has the same disadvantages
specification of the source and destination IP address and pmstthe “link measurement” approach.
number, flow start-time, duration, the number of bytes and
packets, amongst others. C. Related Work

One disadvantage of flow aggregation is that the amount of
measurement data can be considerable; the traffic generated ca#fMPpling has been proposed as a method to measure the
impose a significant additional load on the network. This is e§nd-to-end performance of individual flows in connection-ori-

ented networks [10], [31]. ATM cells are sampled at the ingress

11For some router models, flow caches already exist to speed up route Q‘T&d ggress points of a virtual circuit in order to measure QoS
access control list (ACL) lookup. metrics such as the end-to-end delay and the loss rate. To
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compute these metrics, cells at the ingress and egress pomgpecific ingress and egress node. We can then append a pay-
have to be matched. The authors propose to label cells usinigad to this header that forces the sampling of this packet, by se-
hash function over the header and payload. lecting the payload such that(¢(x)) = 1. The label for this

While this use of identification hashing is similar to ourspacket can also be determined. This method could be used to
there are some fundamental differences between this methedify specific routes for debugging or for monitoring purposes.
and trajectory sampling. The focus of end-to-end hash-based
sampling is on determining the QoS of a single connection,
rather than obtaining a statistically representative sample of the
entire path matrix over a domain. Therefore, these methods ddn this paper, we have proposed a method for the consistent
not require a pseudorandom sampling hash function to dete@mpling of packet trajectories in a network. The sampling se-
mine which packets to sample. The goal is simply to selectiects a subset of packets, but if a packet is selected at one link,
subset of cells for which the end-to-end performance is metwill be selected at every other link it traverses. On traversing
sured. In fact, in [10], it is suggested to use simple bit pattethe network, each packet implicitly indicates whether or not it
matching in the cell content to sample packets; this would ngliould be sampled through its invariant part, i.e., those bits that
be an acceptable sampling hash function. do not change from link to link. A hash of these bits it calcu-

In contrast, trajectory sampling critically relies on a samplinigted at each router, and only those packets whose sampling
hash function to select a statistically representative subseth@shes fall within a given range of values are selected. For se-
packetsover all the flows traversing the networkhis is be- lected packets, a different hash, the identification hash, is used
cause there is a strong correlation between some fields in thetamp an identity on the packet. This is communicated by the
packet (e.g., the destination address) and the path taken bys@epling router to the measurement systems. This enables post
packet. The focus of trajectory sampling is to directly obsengampling analysis of distinct trajectories once the samples are
the entire traffic flowing through a domain, rather than a singlkeported. The method has a number of desirable properties:

flow at its endpoints, and to infer statistics on the spatial flow of « Simple ProcessingThe only per-packet operations re-

VI. CONCLUSION AND FURTHER WORK

this traffic. quired are the division arithmetic on a small number of
bytes in the packet header. No packet classification or
D. Extensions and Other Applications memory lookups are used.

* No Router Statés required in the per-packet processing
of the router, packets being processed individually. No
caching is required in the measurement subsystem of the
router, thus avoiding cache delay and possible biasing
through the requirement of cache expiry policies. This
does not exclude the possibility of having state in the
reporting system in the router; it may be desirable to
aggregate discrete reports to the measurement system
rather than sending them individually.

Packets are directly observe@he course of the packets
through the network can be determined without a net-
work model that specifies how they ought to be routed.
This is important for debugging since routing may not
easily specify current routing state of the system [15],
[33]. Moreover, configuration or other errors may cause

Distributed Denial-of-Service Attacks (DDoSThis type of
attack floods a network or a host with bogus traffic with the in-
tent of breaking down service to legitimate clients [7]. Attackers
often use packet spoofing, i.e., using false source addresses, to
evade detection and exacerbate the impact of the flood. Because
of this, it is difficult to identify the real source(s) of the attacking
traffic, because there is ra posterioriinformation available
to deduce where a packet entered the network and what path it
followed. The method presented in this paper may help in the ,
detection of such an attack, as sample trajectories provide the
actual paths packets are taking to reach the targeted system de-
spite the fake source address.

Filtering: There may be situations where it is desirable to
apply trajectory sampling only to a subset of the traffic in a
domain. For example, a network operator might want 10 eX-  4¢qa] routing behavior to deviate from that specified by
amine only the traffic destined for a particular customer, oronly  {ho model.
the traffic of a certain service class. The amount of measureq, the future, we plan to investigate the performance of a

ment traffic can be reduced in such a situation if only the traffigiger class of hash functions. There are two motivations here.
matching the desired criterion is sampled. This can be achieyggk; \ve wish to evaluate the utility of hash functions with
by preceding the sampling device described in Section V-Awitfyronger randomization properties, e.g., universal hashing [29].
a configurablepacket filter The network operator could thengecond, there are implementational advantages in using hash
configure the filters of all the interfaces in the network to sampfgnctions, such as MD5 [22], that may already be available in
only the desired subset of traffic. This could again be achievgdiwork elements.
through the sampling device’s SNMP MIB. We also propose to evaluate trajectory sampling in a network
Probe Packets:In a network domain which supports trajeccontext. The aims are to understand trajectory reporting over a
tory sampling, itis possible to probe end-to-end routes in a nowgide network, and to develop technique for systematic trajec-
way. Assuming that the sampling and identification hash funtary reconstruction, including resolution of ambiguities of the
tions in the domain are known, it is possiblectinstruct packets type discussed in Section 11-B. The approach combines routing
that will be sampleds they traverse the network. Suppose wieformation and traffic traces to make a network simulation that
wish to check the path of a packet with a given header betwegaptures the topology and traffic patterns of real networks.
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