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Trajectory Sampling for Direct Traffic Observation
N. G. Duffield, Member, IEEE,and Matthias Grossglauser, Associate Member, IEEE

Abstract—Traffic measurement is a critical component for the
control and engineering of communication networks. We argue
that traffic measurement should make it possible to obtain the spa-
tial flow of traffic through the domain, i.e., the paths followed by
packets between any ingress and egress point of the domain. Most
resource allocation and capacity planning tasks can benefit from
such information. Also, traffic measurements should be obtained
without a routing model and without knowledge of network state.
This allows the traffic measurement process to be resilient to net-
work failures and state uncertainty. We propose a method that al-
lows the direct inference of traffic flows through a domain by ob-
serving the trajectories of a subset of all packets traversing the net-
work. The key advantages of the method are that 1) it does not
rely on routing state; 2) its implementation cost is small; and 3)
the measurement reporting traffic is modest and can be controlled
precisely. The key idea of the method is to sample packets based on
a hash function computed over the packet content. Using the same
hash function will yield the same sample set of packets in the entire
domain, and enables us to reconstruct packet trajectories.

Index Terms—Hash functions, Internet traffic measurement,
packet sampling, traffic engineering.

I. INTRODUCTION

T HE efficiency of resource allocation and the quality of
service (QoS) provided by IP networks depends critically

on effective traffic management. Traffic management consists
of short-termtraffic controland longer-termtraffic engineering.
Traffic control operates on a time scale of seconds and without
direct human intervention. Examples of traffic control functions
include congestion control, automatic recovery in case of link
or router failures, or admission control. Traffic engineering
operates on time scales from minutes to weeks or months, and
typically with some degree of human intervention. Its goal is
to optimally allocate network resources, such as link capacity,
to different classes of network traffic in order to ensure good
service quality and high network efficiency. Examples of traffic
engineering functions include traffic characterization (e.g.,
trending), accounting (e.g., for pricing), and capacity planning
and provisioning.

All of these functions represent feedback loops on a wide
range of time scales and of varying spatial extent, andtraffic ob-
servationor measurementis therefore an integral component of
these functions. The importance of traffic measurement capabil-
ities is compounded by the fact that IP networks do not main-
tain per-flow state. By contrast, in circuit-switched networks,
the traffic is essentially “observable for free,” because per-call
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state exists along each node on the call’s path. In a sense, the
scalability of the stateless IP networks has been bought at the
expense of observability.

Virtually all traffic engineering functions, such as route op-
timization or planning of failover strategies, rely on an under-
standing of the spatial flow of traffic through the domain. For
example, suppose we observe that some link in the backbone
is overloaded. Appropriate corrective action requires an under-
standing of which ingress points the traffic observed on this link
originates and where it is headed, what customers are affected
by the congestion, and what the traffic mix is; without this infor-
mation, effective remedies (e.g., rerouting of part of that traffic)
cannot be taken [11], [12]. Also, it should be possible to infer
what fraction of traffic entering the measurement domain at a
certain ingress point traverses each link in the network, for ex-
ample to focus on how the traffic of a specific customer flows
through the domain, and to diagnose which link might be the
reason for a performance problem experienced by that customer.
Domain-wide spatial traffic information is also a prerequisite
for the establishment of label-switched tunnels [3], or to decide
which potential ingress point is best to connect a new customer
to the domain.

We distinguish between direct and indirect measurement
methods. Conceptually, an indirect measurement method relies
on a network model and network status information to infer
the spatial flow of traffic through the domain. For example,
suppose that the traffic is observed only at network ingress
points (e.g., by computing statistics on the distribution of
source–destination pairs). In order to infer how that traffic
flows through the domain, timely and accurate information
about the state of the routing protocol and link states has to
be available. If assumptions about traffic routing have to be
made in order to obtain the traffic flow matrix, then the use of
an outdated routing table can lead to erroneous inferences, and
suboptimal allocation of network resources.

More generally, indirect measurement methods suffer from
the uncertainty associated with the physical and logical state of
a large heterogeneous network [11]. This uncertainty has several
sources. First, the exact behavior of a network element, such as
a router, is not exactly known to the service provider and de-
pends on vendor-specific design choices. For example, the algo-
rithm for traffic splitting among several shortest paths in open
shortest path first (OSPF) is not standardized. Second, there are
deliberate sources of randomness in the network to avoid acci-
dental synchronization, e.g., through active queue management
disciplines [13] or randomized timers in routing protocols [14].
Third, some of the behavior of the network depends on events
outside of the control of the domain, for example, how traffic
is routed within an autonomous system (AS) depends in part on
the dynamics of route advertisement to this AS by neighboring
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domains [18]. Fourth, the interaction between adaptive schemes
operating at different time scales and levels of locality (e.g., QoS
routing, end-to-end congestion control) may simply be too com-
plex to characterize and predict [30]. Finally, with increasing
size and complexity, the likelihood increases for faults and mis-
configurations to disrupt the normal operation of the network.
Often, traffic measurement is one of the potential tools to detect
and diagnose such problems; however, this benefit is mitigated
if traffic measurement requires correct network operation.

A directmethod does not rely on a network model and an es-
timation of its state and its expected behavior. Rather, it relies on
direct observation of traffic at multiple points in the network. As
such, it does not suffer from the sources of uncertainty discussed
above. In this paper, we describe a direct method for traffic
measurement, called trajectory sampling. The method samples
packets that traverse each link (or a subset of these links) within
a measurement domain. The subset of sampled packets over a
certain period of time can then be used as a representative of the
overall traffic.

If packets were simply randomly sampled at each link, then
we would be unable to derive the precise path that a sampled
packet has followed through the domain from the ingress to the
egress point. The key idea in our proposal is therefore to base
the sampling decision on a deterministic hash function over the
packet’scontent. If the samehash function is used throughout
the domain to sample packets, then we are ensured that a packet
is either sampled oneverylink it traverses, or on no link at all. In
other words, we effectively are able to collecttrajectory samples
of a subset of packets. The choice of an appropriate hash func-
tion will obviously be crucial to ensure that this subset is not
statistically biased in any way. For this, the sampling process,
although a deterministic function of the packet content, has to
resemble a random sampling process.

A second key ingredient of our proposal is that ofpacket la-
beling. Note that to obtain trajectory samples, we are not inter-
ested in the packet contentper se; we simply need to know that
some packethas traversed a set of links. But to know this, it is
sufficient to obtain a unique packet identifier, or label, for each
sampled packet within the domain and within a measurement
period. Because the label is unique, we will know that a packet
has traversed the set of links which have reported that partic-
ular label. We propose to use a second hash function to com-
pute packet labels that are, with high probability, unique within
a measurement period. While the size of the packet labels obvi-
ously depends on the specific situation, note that labels can in
practice be quite small (e.g., 20 bit). As the measurement traffic
that has to be collected from nodes in the domain only consists
of such labels (plus some auxiliary information), the overhead
to collect trajectory samples is small.

Trajectory sampling has several important advantages. It is a
direct method for traffic measurement, and as such does not re-
quire any network status information. The spatial flow of traffic
through the domain can be inferred from trajectory samples,
i.e., paths taken by a pseudorandom subset of packets through
the domain. Trajectory sampling does not require router state
(e.g., per-flow cache entries) other than a small label buffer.
The amount of measurement traffic necessary is modest and
can be precisely controlled. Multicast packets require no special

treatment—the trajectory associated with a multicast packet is
simply a tree instead of a path. Finally, trajectory sampling can
be implemented using state-of-the art digital signal processors
(DSPs) even for the highest interface speeds available today.

This paper is structured as follows. We define notation and
formally define trajectory sampling in Section II. We discuss the
choice of parameters for the hashing functions, and demonstrate
their statistical properties in Section III. We give an example of
traffic measurement based on an extensive packet trace in Sec-
tion IV. In Section V, we discuss implementation issues and pos-
sible extensions of trajectory sampling. Section VI concludes
the paper.

II. FORMAL DESCRIPTION OFTRAJECTORYSAMPLING

For simplicity, let us describe the scheme assuming that all
packets are of sizebits. We represent the measurement domain
as a directed graph , where is the set of nodes and
is the set of directed links. Packets enter the measurement do-
main at aningress node. They traverse several links to leave the
measurement domain at anegress node(or several egress nodes
in the case of a multicast packet1 ). A packet can potentially be
dropped at an intermediate node. We let denote thecon-
tentof a packet at link , i.e., the sequence of bits making up
the IP header and the IP packet content. When there is no risk
of ambiguity, e.g., when considering a stream of packets at a
single link, we refer to a packet and its content
interchangeably.

Consider all the packets entering the domain
within a measurement interval of length. The trajectory of
packet is the set of links traversed by packet. In the case
of a unicast packet, the trajectory is a path from the ingress node
to the egress node or to the node where the packet is dropped. In
the case of a multicast packet, the trajectory forms a tree rooted
at the ingress node.

The invariance function is a function of the packet content
whose output depends of the invariant packet content, i.e., the
bits of the packet that are not modified upon forwarding, as de-
scribed below. An invariance function does not depend, for ex-
ample, on the time to live (TTL) field, which is decremented
at each hop. Without loss of generality, we assume here that
the function simply extractsall the invariant bits from the
packet.

(1)

The basic idea of trajectory sampling is to decide whether to
sample a packet based on a deterministic function of the in-
variant packet content ; we call this deterministic func-
tion thesampling hash function, defined as a map

(2)

of the invariant packet content into-bit binary numbers. A
packet is sampled if for some givensampling

1Strictly speaking, several copies of a multicast packet could enter the mea-
surement domain at multiple ingress nodes; for our purposes, we can simply
consider each copy of the multicast packet entering the domain as an indepen-
dent packet.
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Fig. 1. Schematic representation of trajectory sampling. A measurement system collects packetlabels from all the links within the domain. Labels are only
collected from a pseudorandom subset of all the packets traversing the domain. Both the decision whether to sample a packet or not, and the packet label, are a
function of the packet’s invariant content.

domain . We call the indicator function defined
through

otherwise
(3)

thesampling function. Note that we use the same sampling func-
tion on each link in the measurement domain. In this way,
a packet is either sampled everywhere on its trajectory or not at
all, and the sample data lets us reconstruct the trajectories of the
sampled packets.

In principle, a node could send the entire content of a sampled
packet to the measurement collection system. However, this is
very inefficient; note that to identify trajectories, we are not in-
terested in the content of the packetper se; we only need an iden-
tifier to distinguish a given packet from other sampled packets,
in order to obtain unambiguous samples of packet trajectories.
Therefore, we use anidentification hash function to compute
a compact packet identifier on the constant part of the packet.

(4)

In this way, we only have to send bits per sampled packet per
link to the collection station.

An alternative of compressing the packet header for use as a
label is not expected to be effective in reducing label volume.
Effective compression is based on building a dictionary of re-
peated symbols in the objects to be compressed. Such repetition
is not expected to occur in single packets. Reuse of the dictio-
nary across multiple packets with common fields (e.g., packets
sampled from a flow) would require maintenance of additional
state in the router. Moreover, label size may not be easy to con-
trol. By comparison, use of a label hash is simple, stateless, and
provides fixed length labels.

In its most basic form, trajectory sampling performs the fol-
lowing simple operation at each link in the domain: for each
observed packet of content, if then send the
label to the measurement collection system. While this
suffices to identify packet trajectories, additional information

Fig. 2. Invariant packet content. The hash functions are computed over a subset
of header fields and part of the payload. Variable field change along the path;
low-entropy fields are invariant along paths but vary little between packets; high-
entropy fields and invariant along paths and vary significantly between packets.

about a sampled packet (such as its length and its source and
destination addresses) are required for many measurement pur-
poses. It is sufficient to collect this additional information once
per sampled packet. For example, ingress nodes could be con-
figured to retrieve this information along with the labels, while
all other nodesonly collect labels (cf. Fig. 1).

A. Packet Identity and Invariant Content

The definition of the invariance function is completed by
identification of the invariant packet content. Here we consider
only packets in IP version 4. In Fig. 2, we illustrate the fields of
the IP packet header and the packet payload. We divide the fields
into three categories: 1) variable fields, i.e., those which change
along a packet’s path; 2) low-entropy fields, i.e., those which
are invariant for a given packet along a path, but have little or
no variation from packet-to-packet; and 3) high-entropy fields,
which are invariant for a given packet along a path and can also
vary greatly between packets. The invariant packet header can
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then be taken as the set of high-entropy fields. The low-entropy
fields could also be included, but this would add scant statis-
tical variability to the invariant packet content, and would re-
quire additional processing time when calculating the sample
and labeling hash.

We now comment in more detail on the properties of the spe-
cific fields. The variable fields are the TTL (bits 64–71) which
is decremented per hop, and the SERVICE TYPE field (bits 8–15)
since certain of its bits may be changed in transit, e.g., during Ex-
plicit CongestionNotification [21], andbyoperationofDifferen-
tiated Services [4]. The HEADER CHECKSUM (bits 80–95) is re-
calculated on changes of each of these and hence is also variable.

Low-entropy fields are the VERSION (bits 0–3), HEADER

LENGTH (bits 4–7), and PROTOCOL (bits 72–79). These are
either constant or take one of a small number of values.

The remaining fields are taken to be of high entropy. SOURCE

AND DESTINATION IP ADDRESS (together bits 96–159) are
included in the invariant packet content. We also include the
IDENTIFICATION field (bits 32–47). FLAGS (bits 48–51) and
FRAGMENT OFFSET(bits 52–63) are likewise mutable through
fragmentation. Indeed, fragmentation raises potentially a larger
issue, since it provides a mechanism by which the notion of
a single identifiable packet becomes corrupted. However, we
expect fragmentation to by confined to the network edge, with
an edge-to-edge notion of packet identity remaining valid, even
in cases where it is invalid end-to-end. In this case, we can
include TOTAL LENGTH, FLAGS, and FRAGMENT OFFSETwithin
the invariant content.

The remainder of the packet following the first 20 bytes com-
pletes the invariant packet content. In certain IP options packets,
such as packets with a record route option, these following bytes
may change hop by hop. However, since such packets are rare,
we believe the effect on sampling can be ignored.

B. Ambiguous Trajectories

We discuss how to infer trajectories from the labels collected
from the network over a measurement period. The measurement
period is chosen as an upper bound of the packet lifetime (e.g.,
10 s). We assume that all the packet observations made within
the same measurement period can only be distinguished by their
label, not by their arrival time within the measurement period.
As labels are allocated pseudorandomly to sampled packets,
their is obviously a chance oflabel collision, i.e., of two or more
packet trajectories having the same label in the same measure-
ment period. The question we address in this subsection is under
what circumstances we can disambiguate these trajectories.

It is useful to introduce the concept of alabel subgraphasso-
ciated with a label and a measurement period. The label sub-
graph is simply the graph of the network domain, where each
link is annotated with the number of times labelhas been gen-
erated by that link in the measurement period; links with zero
are deleted. A label subgraph basically represents the superpo-
sition of all the trajectories in the measurement period that had
this label.

We restrict this discussion to unicast packets and to acyclic
label subgraphs. First, note that in the trivial case where a label
subgraph stems from a single trajectory, that trajectory can al-

Fig. 3. Trajectory disambiguation. Examples of unambiguous (a–e) and
ambiguous (f–h) label subgraphs. For (e) and (g), a packet is dropped at an
interior node.

ways be inferred unambiguously. Intuitively, this is because a
packet is either sampled everywhere in the domain or nowhere.
Thus, if we observe labelon exactly one inbound and one out-
bound link of a node, it must be the same packet.2 By induction,
the entire trajectory can be reconstructed without ambiguity.

Second, let us consider the case where the label subgraph is
the superposition of several trajectories. A few examples of su-
perpositions of two trajectories are given in Fig. 3. The examples
(a) through (e) are unambiguous, while examples (f) through (h)
are ambiguous.

The following property holds: a label subgraph is unam-
biguous if each connected component of the subgraph is either 1)
a source tree, or 2) a sink tree such that for each node on the sink
tree, the degree of the outbound link is the sum of the degrees of
the inbound links. Note that example (e) is unambiguous because
the only connected component is a source tree; it is also a sink
tree, but the degree condition does not hold.

Also note that ambiguity as defined here pertains only to the
trajectoriesfollowed by packets. For example, example (e) is
unambiguous because there is no ambiguity about the two tra-
jectories followed by the packets. However, if we have collected
other attributes of the two packets (at the ingress node, say), then
we have no way of knowing from (e) which packet was dropped
in the middle, and which one made it to the egress node. In con-
trast, there are several possible sets of trajectories that can result
in the label subgraphs (f) to (h).

2We view packets generated by routers (e.g., routing updates) as coming from
a virtual ingress node connected to that router.
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In summary, a label can be attributed to its trajectory 1) if the
label is unique, or 2) if it can be disambiguated. Obviously, the
probability that a label of some trajectory can be disambiguated
depends on the network topology, and the traffic rates on all the
other trajectories. Therefore, the number ofunambiguouslabels
on a trajectory is in general a biased estimator of the traffic rate on
that trajectory, and it is necessary to renormalize rate estimators
after disambiguation. Another way to avoid bias is to simply dis-
card all duplicate labels, regardless of whether theycouldbe dis-
ambiguatedornot.This issimple,but incurssomelossofsamples.

III. PERFORMANCE OFTRAJECTORYSAMPLING

In this section, we study the performance of trajectory sam-
pling. Our overall goal is to obtain as many pseudorandom
trajectory samples from the network as possible, without using
too many resources (network bandwidth, collection system
memory). In this paper, we demonstrate hashes based on mod-
ular arithmetic (see, e.g., [17]), and show that the parameters of
this scheme can be chosen such that the hashes appear statisti-
cally independent from the original packet content, thus enabling
unbiased sampling.3 We then compute the optimal choice of the
total number of samples to be collected from the network and the
number of bits per sample, subject to a constraint on the network
bandwidth available for traffic measurement.

A. Specification of Hash Functions

We regard the ordered bits of a packetand of its invariant
part as binary integers. We use the sampling hash

(5)

and sampling domain , forpositive integers
and . Thus a packet is sampled if is less than .

The modulus is chosen in order to avoid collisions arising from
certain structural properties of the packet contents. For example,
we expect to find complementary sets of packets in which source
and destination IP addresses are interchanged, arising from the
two-way flow of traffic in TCP sessions. The hash function, and
hence the modulus, must be chosen to avoid collisions in which a
pairofpackets thatdiffer littlebysuchan interchangearemapped
onto the same remainder. Knuth (see [17, sec. 6.4]) formulates a
condition for avoidance of such collisions, namely that

for small where is a radix of the alphabet used
to describe the header. Including in this criterion sup-
presses collisions of the type described above. Moduli obeying
these conditions can be selected from tables of primes.deter-
mines the granularity of sampling;must be chosen sufficiently
large in order that the smallest available sampling rate, namely

for , is sufficiently small.
Sampled packets are encoded using a similar hash function

(6)

with the modulus in order that the identification hash be
uncorrelated with packet sampling.

3Clearly other choices of hash function are possible provided they satisfy suit-
ably strong randomization properties. Candidates include message digesting,
e.g., MD5 [22], and universal hashing; see [29].

Fig. 4. Packet collisions. The fraction of packets whose prefix is not unique,
as a function of the prefix lengthl. The smallest value for the prefix length
(20 bytes) corresponds to using only the packet header.

B. Identical Packets

As hashing is a deterministic function, if two packets are ex-
actly identical, then the sampling decision and their label will be
identical as well. Therefore, identical packets are not sampled
pseudorandomly by our method, which can lead to biased esti-
mators. We therefore have to convince ourselves that identical
packets are rare in practice. We call the occurrence of identical
packets in a tracecollisions.

More generally, we are interested in the frequency with which
a prefix of a certain length (i.e., the first bytes, with the
variable fields masked out) of a packet is not unique within a
large set of packets. If we can identify a packet prefix length
for which collisions are rare, then it is sufficient to compute the
sampling and the identification hash over this prefix. In a sense,
the prefix generates sufficient “entropy” to make the sampling
and labeling processes look random.

We have computed the number of collisions in a trace of one
million packets, as a function of the packet prefix length; see
Fig. 4. (The trace used is described in more detail at the start of
the next section.) It is clear that relying only on the packet header
is not sufficient for trajectory sampling to work well, as iden-
tical headers appear too frequently ( bytes). However,
increasing the packet prefix length to take into account a few
bytes of the payload quickly decreases the collision probability
to below . Increasing the packet prefix length beyond about
40 bytes does not reduce collisions any further; the remaining
collisions are due to packets that are indeed exact copies of at
least one other packet.4 However, collisions are sufficiently rare
to be inconsequential.

C. Evaluation of Hash Functions

We explored the statistical properties of hashing algorithms
on packet traces. The traces were gathered using the
utility [16] on a host attached to a local area network segment

4We note that the majority of these residual collisions are due to TCP dupli-
cate acknowledgment packets, which are indeed exact copies of each other.
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TABLE I
2-BY-I TABLE OF BIN OCCUPANCIES

close to the border of a campus network. Analysis was per-
formed on four traces each comprising one million IP packets.
Except in one case, the traces involved traffic between about
500 distinct campus hosts and about 3000 distinct external hosts.
The exception was a trace of a single ftp session set up between
two campus hosts.

The hash functions were implemented in 32-b integer arith-
metic by long division over 16-b words. Thus, a given number

has its modulus
calculated through iteration of

(7)

Since the word size is 16 bits, fits within
a 32-bit unsigned integer.

A desirable property of sampling hash is that packet sam-
pling should appear independent of a proper subset of the packet
content. Consequently, the distribution of any variable attribute
of the packet (such as source or destination IP address) should
be the same for sampled packets as for the original population.
We now perform tests of the independence hypothesis, based on
chi-squared statistics calculated from the samples and the orig-
inal traces.

Consider a given attribute of the packet (or set of packets),
e.g., destination IP address. Partition the range of attribute
values seen in the full trace into a numberof bins, with
values falling in bin , there being packets in
total. Suppose that of the samples have attribute in bin,
there being samples in total. Likewise, there are

unsampled packets in bin, with
unsampled packets in total. We form the 2-by-contingency
table of bin occupancies shown in Table I.

The chi-squared statistic for Table I is

(8)

where is the expected values of under the
null hypothesis that the bin occupied by a given packet is inde-
pendent of whether or not it is sampled. For a given confidence
level (say, 95%), we accept this hypothesis if , the
th quantile of the chi-squared distribution with degrees of

freedom. Equivalently, we accept if , where the is
the cumulative distribution function of the chi-squared distribu-
tion with degrees of freedom.5 We applied three variants
of this procedure in order to test the independence hypothesis.

5Chi-squared and related statistics are evaluated as discrepancy metrics for
sampled network traffic in [9], [20], [32]; the latter paper discusses optimization
of bin sizes for ordinal data such as interevent times.

Fig. 5. Hash-sampled address distributions. Confidence levelsC(T ) from
chi-squared statistics of sampled address distributions as a function of thinning
factor. In all cases, the sample distribution is consistent with that of full trace
down to a 80% confidence level. Sampling hash is calculated on a 40-byte
packet prefix.

Address Prefix Distributions:Packets were binned on ad-
dress prefix. The sampling hash was calculated using a 40-byte
packet prefix. Increasing the packet prefix for the sampling hash
beyond this point does not decrease the frequency of collisions
(see Fig. 4), so we expect no further reduction in dependence
between sampling hash and packet address.

The experiments reported here used a fixed length 8-bit
prefix, yielding . We amalgamated binswith expected
occupations in order to avoid underemphasizing
contributions to , which could otherwise lead to optimistic
acceptance of the null hypothesis.6 Of 80 bins occupied in the
full trace, nearly half remained occupied at a thinning factor of

. Fig. 5 shows as a function of the thinning factor
using modulus . In all cases, was less

than 0.8; thus the sampled and full trace address distributions
cannot be distinguished at 80% or higher confidence level.

We repeated the experiments for two other binning schemes:
1) fixed length 16-bit address prefixing; and 2) BGP address pre-
fixing in which addresses are allocated to bins according to their
longest prefix match on a snapshot of the BGP routing table. In
both these cases, there were roughly 1000 bins occupied by the
full trace. The confidence levels were lower than those re-
ported above, i.e., the independence hypothesis would be more
readily accepted.

Bitwise Address Distributions:Let denote the th packet
in a stream, and its th bit. For each bit positionwe con-
struct the 2-by-2 contingency table in which is the number
of packets for which the sampling function
and the th bit is . We calculated the corresponding
chi-squared statistic for each address bit, using each of two
traces, three distinct primes and , and
thinning factors between approximately and ,
all hashing on a 40-byte packet prefix. According to the null
hypothesis, each suchshould follow a chi-square distribution
with one degree of freedom. We summarize these statistics in
Fig. 6 through a quantile–quantile plot of thevalues against

6See [24, sec. 4.3] for treatment of small expected occupations.
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Fig. 6. Hash-sampled address bits distributions. Quantile–quantile plot of
address bit chi-square values versus chi-squared distribution with one degree
of freedom; for various traces, primesA, thinning factorsr=A; see text. Close
agreement for 40-byte packet prefixes; marked disagreement for 20-byte packet
prefixes (i.e., no payload included for sampling hash).

this chi-square distribution. This shows close agreement; the
plot is similar to that obtained using randomly generated sta-
tistics from the expected distribution. For comparison, we also
show quantiles obtained with a 20-byte packet prefix, i.e., using
only the invariant header for sample hashing. In this case, there
is poor agreement, with many highvalues, presumably due to
the increased frequency of collisions.

Temporal Sampling Distributions:For a trace of a single ftp
session between two hosts, we check that the packet sample
process is consistent with that of independent sampling at
the average sampling rate. We allocate packets into one of
two bins, according to whether the succeeding packet in the
session is sampled or not. This results in a 2-by-2 contingency
table in which is the number of packets for which the
sampling function , while that of its successor
is . According to the null hypothesis, the
statistic follows a chi-squared distribution with one degree
of freedom. We performed a number of experiments using

, thinning factors between and , and
packet prefixes of 50 bytes or larger. In each experiment, we
were able to accept the hypothesis at the 95% confidence level.

D. Optimal Sampling

We next discuss the choice of the number of samplesand the
number of bits per sample. For convenience, we let
denote the alphabet size of the identification hash.

Based on the discussion in Section II-B, if two different tra-
jectories happen to use the same label, then they may or may
not be ambiguous. The probability that we get an unambiguous
sample of a trajectory depends on the statistical properties of
all the other trajectories that might interfere. This is difficult to
analyze. However, we are able to obtain a lower bound on the
number of unambiguous labels. For this purpose, we assume
that the label subgraph is ambiguous whenever there is a label
collision. In other words, we disregard the cases discussed in
Section II-B, where several trajectories with the same label can
be ambiguous.

We obviously face two conflicting goals for the choice of
and . On the one hand, the reliability of traffic estimates in-
creases with the number of unambiguous samples we can col-
lect. On the other hand, we have to limit the total amount of
measurement traffic between the routers in the domain and the
collection system. Note that the amount of traffic incurred over
a measurement period is given by bits, because an -bit
label is transmitted to the collection system for each of the
samples (ignoring packet headers for the measurement packets
and other overhead).

We therefore formulate the following simple optimization
problem: we want to maximize the expected number of unique
(unambiguous) samples, subject to the constraint that the total
measurement traffic must not exceed a predefined constant
. We assume that each sample independently takes one of

the label values with uniform probability . The
marginal distribution of the number of samples taking a given
label is binomial . Hence, the probability that the label
is generated exactly once in the domain with the measurement
period is

(9)

Let be the random variable that takes the value 1 if labelis
taken by exactly 1 sample, and 0 otherwise. The mean number
of unique samples is then

(10)
where denotes the expected value under the assumed uniform
label distribution. For fixed , is obviously maximized
for , and we therefore maximize

(11)

Solving yields the maximizing , where is
the derivative of , namely

(12)
where . We can show that the
equation has a unique positive solution . This is
because is a decreasing function of
with range , while is increasing
with range . Hence, the second factor in (12)
can be zero at only one stationary point . Furthermore,

as and , so since is positive and
continuous, the stationary point is a maximum.

We can establish the bounds where

(13)

(14)

where . The upper bound arises because, since
for is greater than , is bounded above by

the solution to the equation .
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Fig. 7. The expected number of unique samplesU(n) as a function ofn, for
c = 10 bit. The optimal number of samplesn is approximately5:15 � 10 ,
with m = 19:4 bit per label. The collision probabilityp is approximately
0.072, i.e., 7.2% of the samples transmitted to the collection system have to be
discarded.

is in turn bounded below by the solution to the equation
. But then since , we have ,

the solution to , as given in
(14).

From these bounds, we can approximatethrough the large
asymptotic

(15)

This approximation is good even for only moderately large,
due to the slowly varying nature of the logarithm function.

Although we havedefined , the notation is con-
sistent in that is, asymptotically, the size of the alphabet
used to represent the maximizing number of unique samples.
This is because the corresponding label size is the lowest in-
teger greater than or equal to

, as .
We compute the sample collision probability at the optimal

operating point.

(16)

Fig. 7 illustrates how maximizes : for ,
collisions are very rare—we waste label bits for too few sam-
ples; for , collisions are too frequent—we waste samples
through collisions because label identifiers are too short. Note
that the optimal can obviously not be achieved exactly. In
practice, we choose the largest integer satisfying the
conditions put forth in Section III-A.

Let us look at a specific example that illustrates howand
would be chosen in practice. Assume that the measurement

domain consists of 100 OC-192 links (10 Gb/s each). Suppose
the measurement system can handle 10 Mb/s of incoming label
traffic for the entire domain.7 Furthermore, we choose a mea-
surement epoch to be s; this is a conservative upper
bound on the lifetime of a packet traversing the domain. For
simplicity, we assume that all packets are 1500 bytes long.

The bound on the total amount of measurement traffic is
bits. The number of samples we should collect

over the measurement period is , or about 3840
samples per link per second. A fully loaded OC-192 link can
carry about 1500-byte packets per second. There-
fore, we would configure the sampling hash in this domain so
that the sampling probability for a packet would be approx-
imately . The labels would be

bits long. The actual number of samples
will obviously depend on how heavily each link is loaded. The

main point of the above analysis is to allocate enough bitsto
labels such that under peak load, the collision probability does
not become too high. Note that if the average packet size is less
than 1500 bytes, we simply have to reduce the sampling prob-
ability accordingly (e.g., by reducing). However, the number
of samples and the label size are not affected, as they
depend only on .

We conclude by describing how the relations between the
maximum mean number of unique samples , the
corresponding label size , the and the transmission volume
constraint , can be exploited for dimensioning the sampling
system. For large, these relations are as follows:

and

(17)

as . Note that each of the quantities and deter-
mines the other two. For example, is an increasing function
of , and hence given a target number of unique labels, one
can determine numerically the minimum capacityand label
size required. As an application, suppose that we wish to
sample during a period of durationfrom a link that carries
packets at rate, and for the expected fraction of unambiguous
labels from the sampled packets to be. Setting
above enables us to determine the minimum label hash size,
and measurement traffic rate required from that link.

IV. TRAFFIC MEASUREMENT

In this section, we use trajectory sampling for a simple mea-
surement task. The goal of this experiment is to illustrate how
estimators can be constructed based on the sampled labels re-
ceived from the measurement domain. We study the following
simple scenario. Assume that a service provider wants to de-
termine what fraction of packets on a certain backbone link be-
longs to a certain customer (cf. Fig. 8). To estimate this fraction,
the service provider can rely on the labels collected from the

7We do not discuss distributed implementations of the measurement collec-
tion system in this paper, but the potential of distributed measurement pro-
cessing to increase the amount of measurement traffic is obvious.
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Fig. 8. Measurement experiment. A simple experiment where labels from two
links are compared to estimate what fraction of traffic on the backbone link
comes from the customer access link.

backbone link and from the access link(s) where the customer
connects to the network.

For the purposes of experimentation, we adapt the packet
trace used in the previous section to the present context as
follows. All packets with a certain source prefix are desig-
nated as originating from the reference customer, while the
remaining packets are assumed to be background traffic from
other sources. Similarly, only packets with a certain destination
prefix are assumed to cross the backbone link, while the
remaining packets are not routed over that link.

For the sake of this experiment, the details of the topology do
not matter. To estimate the metric of interest from the collected
labels, we proceed as follows: any label that appears more than
once in the entire measurement domain is discarded.8 Among
the remaining unique labels, we determine which labels are only
observed on the backbone link, and which labels are observed on
both links. This allows us to obtain an estimate for the fraction
of customer traffic on the backbone link, given by

(18)

where is the number of unique labels observed on both the
customer access link and on the backbone link, whileis the
total number of unique labels observed on the backbone link.

Figs. 9 and 10 compare the estimated and the actual fraction
of traffic on the backbone link, for ten consecutive measure-
ment periods. For simplicity, we have defined a measurement
period as a sequence of consecutive packets in the trace,
rather than as a time interval. The graph also shows confidence
intervals around the estimated values. The confidence intervals
are obtained as follows. We compute the standard deviation of
the estimator assuming that each packet gets sampled inde-
pendently and with equal probability. If this is true, then the
probability that a sampled packet belongs to the customer is.
The standard deviation of the estimatoris then9

(19)

8This is to avoid bias in the estimators, as discussed at the end of Section II-B.
9The variance of a Bernoulli random variable with meanp is p(1� p).

Fig. 9. Real and estimated fraction of customer traffic. Forc = 1000 bit for
this link (M = 693:1, B = 691, n = 106).

Fig. 10. Real and estimated fraction of customer traffic. Forc = 10 kbit for
this link (M = 6931:5, B = 6917, n = 782).

The confidence interval we plot is , i.e., one stan-
dard deviation around the estimated value.

Note that the amount of measurement traffic per measure-
ment period from the backbone link ( ) is quite small
(1000 bits in Fig. 9 and 10 kb in Fig. 10). The confidence interval
is reduced as the amount of measurement traffic increases.

A statistical estimator such as the one considered here re-
lies on an underlying random sampling process. The size of the
confidence interval is then a consequence of the central limit
theorem for independent random variables. However, trajectory
sampling is based on adeterministicsampling process, and the
sampling decision for a packet is a function of this packet’s
content. Nevertheless, we observe in this experiment that the
true value of the estimated quantity lies within or very close to
the confidence interval without exception. This is despite the
fact that there is strong correlation between the packet con-
tent (because the customer packets all have the same source
prefix) and the events we are counting (packet belongs to cus-
tomer). This correlation does not translate into a biased sam-
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Fig. 11. Implementation. A possible implementation of trajectory sampling computes both the sampling and the identification hash concurrently andon the
fly. This removes the need to make a separate copy of each packet. The computation of the two hashes, defined in (7), can be implemented with the elementary
multiply-and-add (respectively, divide-and-add) function supported in off-the-shelf DSPs. A small buffer stores labels before they are copied into an IP packet and
sent to the collection system. Some additional logic would be necessary on some nodes (probably on slower ingress nodes) to extract other fields of interest from
a packet, e.g., length, and source and destination addresses.

pling process here. This demonstrates that good hash functions
can sufficiently “randomize” sampling decisions such that the
set of sampled packets (and their labels) are representative of
the entire traffic for the purpose of statistical estimation.

V. DISCUSSION

A. Implementation Issues

We argue that the implementation cost for trajectory sampling
is quite acceptable even for the highest interface speeds avail-
able today. Trajectory sampling requires a device for each inter-
face capable of: 1) computing the sampling hash and making a
sampling decision and 2) computing the identification hash for
the sampled packets.

The computational cost is obviously dominated by the
operations that have to be executed for each packet that goes
through this interface (as opposed to operations only on sam-
pled packets). In our conceptual description of the sampling
process, we have viewed computation of the sampling and the
identification hash as sequential. The identification hash would
only be computed if the packet is to be sampled, otherwise the
packet is discarded. However, from an implementation point
of view, this is undesirable, as it would require buffering each
packet until the sampling hash is computed.

An alternative implementation illustrated in Fig. 11 com-
putes both the sampling hash and the identification hash for
both packets concurrently and on the fly as the bits come in.
The hash functions discussed in Section III-A allow such an
implementation. This removes the burden of having to make a
separate copy of the packet for the purpose of computing the
identification hash. The processor computes both hashes, and
simply writes the identification hashinto the label store if the
sampling hash is equal to one. The label store accumulates
packet labels until it reaches a predefined size, then sends the
labels to the measurement system as a single IP packet.10

10This should be done reliably (e.g., using TCP) in order to avoid loss of
samples during congestion, and therefore possible bias in traffic estimators.

Asanexample,astate-of-the-artoff-the-shelfDSPcanprocess
up toabout600M32-bitmultiply-and-accumulate (MAC)opera-
tions per second. This corresponds to a raw data rate of 20 Gbit/s.
Also, rawmemory I/Obandwidthcanbeupto256bitpermemory
cycle,whichcorrespondsto77Gbit/sat300-MHzclockspeed. In
comparison,anOC-192interface(thefastestcommerciallyavail-
able SONET interface) carries 10 Gbit/s.

While these arguments are based on peak processor perfor-
mance, which typically cannot be sustained for various reasons
(such as pipeline stalls in the processor), these numbers do illus-
trate that the computational requirements necessary for trajec-
tory sampling are within reach of current commodity proces-
sors. It is also interesting to note that the price of such a pro-
cessor is roughly two orders of magnitude lower than that of an
OC-192 interface card. Adding logic for trajectory sampling to
high-speed interfaces would therefore be comparatively cheap.
Also note that to add measurement support to interface cards is
in line with the trend over the last few years to move processing
power and functionality from the router core to the interfaces.

We expect the relative cost of the sampling logic with re-
spect to the interface hardwareper seto evolve in our favor.
In fact, it appears that processor performance increases slightly
faster (doubling every 18 months according to Moore’s law)
than maximum trunk speed (doubling every 21 months) [23].
If these trends persist, then the cost of incorporating trajectory
sampling into the next generations of high-speed interfaces can
be expected to be negligible.

We address the issue of packet encapsulation for tunneling.
The presence of tunneling will impact packet identity through
encapsulation behind a tunnel header. If tunnel endpoints are
confined to the network edge, then one can simply sample con-
sistently in the network interior. Otherwise, in some types of
tunnel the original header could be recovered from the tunnel
payload through appropriate offsetting; see, e.g., IP in IP Tun-
neling [26] and multiprotocol label switching (MPLS) [6]. In
the case of MPLS, tunnels (label-switched paths) can be nested
by prepending the packet with several stacked labels [28]. The
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bottom label is identified by abottom-of-stackflag. As the labels
are of fixed size, the logic to eliminate labels until this flag is en-
countered would be very simple. This approach lets us match up
samples inside and outside the tunnel.

The link sampling device also requires a simple management
interface to enable/disable packet sampling, to tell the device
where to send measurement traffic, and to set the parameters
of the hash functions. A simple network management protocol
(SNMP) management information base (MIB), indexed by the
IP address of the interface, could fulfill this function.

B. Comparison with Other Approaches

We next discuss several common measurement approaches
for IP networks and put them into perspective in light of the
points we made in the introduction. There are two general
classes of measurement approaches.Aggregation-based ap-
proachesare deterministic functions of the observed data. They
usually compute the sum or the maximum of some metric over
the dataset (e.g., the sum of packets traversing a link during
an interval, or the maximum end-to-end round-trip delay for a
set of packets).Sampling-based approachesextract a random
subset of all of the possible observations. This sample subset
is supposed to be representative of the whole. The law of large
numbers asserts that reliable estimators of desired metrics
can be constructed from these samples. The first two methods
we discuss, link measurements and flow aggregation, are
aggregation-based. The third method, end-to-end probing, is
sampling-based.

Link Measurements (Aggregation-Based, Direct):In this ap-
proach, aggregate traffic statistics are measured on a per-link
basis, and are reported periodically (e.g., every five minutes).
Metrics typically include the number of bytes and packets trans-
ferred and dropped within a reporting period. Some of these sta-
tistics are defined as part of the SNMP MIBs [27].

The limitation of this approach is that some information is
lost in the aggregation; therefore, it does not allow to classify
the traffic (e.g., by protocol type, source or destination address,
etc.). More importantly, it is not possible in general to infer spa-
tial traffic flow, i.e., to infer what path(s) the traffic follows be-
tween an ingress and an egress point. As such, this approach
is better suited to detect potential problems, manifesting itself
through link congestion, than to actually analyze the problem
and modify routing information to remedy it.

Flow Aggregation (Aggregation-Based, Indirect):In this
approach, one or several routers within the domain collect
per-flow measurements. A flow comprises a sequence of
packets with some common fields in their packet header
and which are grouped in time [8], [19]. The router has to
maintain a cache of active flows.11 A flow record may include
specification of the source and destination IP address and port
number, flow start-time, duration, the number of bytes and
packets, amongst others.

One disadvantage of flow aggregation is that the amount of
measurement data can be considerable; the traffic generated can
impose a significant additional load on the network. This is es-

11For some router models, flow caches already exist to speed up route and
access control list (ACL) lookup.

pecially true in the presence of large numbers of short flows,
such ashttp-get requests. Also, the measurement traffic is
hard to predict. It depends heavily on the way the router iden-
tifies individual flows, which in turn depends on various con-
trol parameters (such as the degree of aggregation of source
and destination addresses), the traffic mix (protocols), and the
cache size. A further complication may arise if traffic measure-
ments are to be used for real-time control functions. Since a flow
record is usually generated only upon a flow’s completion, this
implies that an on-line statistic may miss a long-lived flow that
has not yet terminated.

A full path matrix over the domain can be obtained if flow ag-
gregation measurements are available at each ingress pointand
if we know how the traffic is routed through the domain. While
this is currently the only approach we are aware of to obtain a
full traffic matrix in IP networks, it has several drawbacks:

• Emulation of routing protocols:Even for nonadaptive
routing, we have to rely on emulation of the routing pro-
tocol to correctly map the ingress traffic measurements
onto the network topology; this requires full knowledge
of the details of the routing protocol as well as its config-
uration.

• No verification:As mentioned before, one important role
of traffic measurement is in the verification and trou-
bleshooting of routing protocols and policies; obviously,
routing emulation precludes detecting problems in the
actual routing, e.g., due to protocol bugs.

• Dynamic and adaptive routing:Dynamic routing (routing
around failed links) or adaptive routing (load balancing
across multiple links/paths) further complicates emula-
tion, because precise link state information would have to
be available at each time (note that widely used routing
protocols such as OSPF have some provisions to balance
load among several shortest paths in a pseudorandom
fashion; this would be impossible to emulate exactly).

Active End-to-End Probes (Sampling-Based, Indirect):In
this approach, hosts (endpoints) connected to the network
send probe packets to one or several other hosts to estimate
path metrics, such as the packet loss rate and the round-trip
delay [5], [1], [2]. In a variation of this approach, hosts do not
actually generate probe packets, but they collect and exchange
measurements of the traffic of a multicast session (e.g., RTCP
[25]).

This approach gives direct measurements ofend-to-end path
characteristics, such as round-trip delay and packet loss rate;
per-link characteristics have to be inferred. This approach can be
viewed as an alternative way to obtain per-link aggregate mea-
surements. Its advantage is that it does not require any measure-
ment support from the network. It has the same disadvantages
as the “link measurement” approach.

C. Related Work

Sampling has been proposed as a method to measure the
end-to-end performance of individual flows in connection-ori-
ented networks [10], [31]. ATM cells are sampled at the ingress
and egress points of a virtual circuit in order to measure QoS
metrics such as the end-to-end delay and the loss rate. To
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compute these metrics, cells at the ingress and egress points
have to be matched. The authors propose to label cells using a
hash function over the header and payload.

While this use of identification hashing is similar to ours,
there are some fundamental differences between this method
and trajectory sampling. The focus of end-to-end hash-based
sampling is on determining the QoS of a single connection,
rather than obtaining a statistically representative sample of the
entire path matrix over a domain. Therefore, these methods do
not require a pseudorandom sampling hash function to deter-
mine which packets to sample. The goal is simply to select a
subset of cells for which the end-to-end performance is mea-
sured. In fact, in [10], it is suggested to use simple bit pattern
matching in the cell content to sample packets; this would not
be an acceptable sampling hash function.

In contrast, trajectory sampling critically relies on a sampling
hash function to select a statistically representative subset of
packetsover all the flows traversing the network. This is be-
cause there is a strong correlation between some fields in the
packet (e.g., the destination address) and the path taken by the
packet. The focus of trajectory sampling is to directly observe
the entire traffic flowing through a domain, rather than a single
flow at its endpoints, and to infer statistics on the spatial flow of
this traffic.

D. Extensions and Other Applications

Distributed Denial-of-Service Attacks (DDoS):This type of
attack floods a network or a host with bogus traffic with the in-
tent of breaking down service to legitimate clients [7]. Attackers
often use packet spoofing, i.e., using false source addresses, to
evade detection and exacerbate the impact of the flood. Because
of this, it is difficult to identify the real source(s) of the attacking
traffic, because there is noa posteriori information available
to deduce where a packet entered the network and what path it
followed. The method presented in this paper may help in the
detection of such an attack, as sample trajectories provide the
actual paths packets are taking to reach the targeted system de-
spite the fake source address.

Filtering: There may be situations where it is desirable to
apply trajectory sampling only to a subset of the traffic in a
domain. For example, a network operator might want to ex-
amine only the traffic destined for a particular customer, or only
the traffic of a certain service class. The amount of measure-
ment traffic can be reduced in such a situation if only the traffic
matching the desired criterion is sampled. This can be achieved
by preceding the sampling device described in Section V-A with
a configurablepacket filter. The network operator could then
configure the filters of all the interfaces in the network to sample
only the desired subset of traffic. This could again be achieved
through the sampling device’s SNMP MIB.

Probe Packets:In a network domain which supports trajec-
tory sampling, it is possible to probe end-to-end routes in a novel
way. Assuming that the sampling and identification hash func-
tions in the domain are known, it is possible toconstruct packets
that will be sampledas they traverse the network. Suppose we
wish to check the path of a packet with a given header between

a specific ingress and egress node. We can then append a pay-
load to this header that forces the sampling of this packet, by se-
lecting the payload such that . The label for this
packet can also be determined. This method could be used to
verify specific routes for debugging or for monitoring purposes.

VI. CONCLUSION AND FURTHER WORK

In this paper, we have proposed a method for the consistent
sampling of packet trajectories in a network. The sampling se-
lects a subset of packets, but if a packet is selected at one link,
it will be selected at every other link it traverses. On traversing
the network, each packet implicitly indicates whether or not it
should be sampled through its invariant part, i.e., those bits that
do not change from link to link. A hash of these bits it calcu-
lated at each router, and only those packets whose sampling
hashes fall within a given range of values are selected. For se-
lected packets, a different hash, the identification hash, is used
to stamp an identity on the packet. This is communicated by the
sampling router to the measurement systems. This enables post
sampling analysis of distinct trajectories once the samples are
reported. The method has a number of desirable properties:

• Simple Processing:The only per-packet operations re-
quired are the division arithmetic on a small number of
bytes in the packet header. No packet classification or
memory lookups are used.

• No Router Stateis required in the per-packet processing
of the router, packets being processed individually. No
caching is required in the measurement subsystem of the
router, thus avoiding cache delay and possible biasing
through the requirement of cache expiry policies. This
does not exclude the possibility of having state in the
reporting system in the router; it may be desirable to
aggregate discrete reports to the measurement system
rather than sending them individually.

• Packets are directly observed:The course of the packets
through the network can be determined without a net-
work model that specifies how they ought to be routed.
This is important for debugging since routing may not
easily specify current routing state of the system [15],
[33]. Moreover, configuration or other errors may cause
actual routing behavior to deviate from that specified by
the model.

In the future, we plan to investigate the performance of a
wider class of hash functions. There are two motivations here.
First, we wish to evaluate the utility of hash functions with
stronger randomization properties, e.g., universal hashing [29].
Second, there are implementational advantages in using hash
functions, such as MD5 [22], that may already be available in
network elements.

We also propose to evaluate trajectory sampling in a network
context. The aims are to understand trajectory reporting over a
wide network, and to develop technique for systematic trajec-
tory reconstruction, including resolution of ambiguities of the
type discussed in Section II-B. The approach combines routing
information and traffic traces to make a network simulation that
captures the topology and traffic patterns of real networks.
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