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n the Internet, packet loss can occur as a result of trans-
mission errors, but also, and most commonly, as a result
of congestion. TCP’s end-to-end congestion control
mechanism reacts to packet loss by reducing the number

of outstanding unacknowledged data segments allowed in the
network. TCP flows with similar round-trip times (RTTs) that
share a common bottleneck reduce their rates so that the
available bandwidth will be, in the ideal case, distributed
equally among them.

Not all Internet applications use TCP and therefore do not
follow the same concept of fairly sharing the available band-
width. Thus far, the undesired effect of the unfairness of these
non-TCP applications has not had a heavy impact since most of
the traffic in the Internet uses TCP-based protocols such as
Hypertext Transfer Protocol (HTTP), Simple Mail Transfer
Protocol (SMTP), or File Transfer Protocol (FTP). However,
the number of audio/video streaming applications such as Inter-
net audio players, IP telephony, videoconferencing, and similar
types of real-time applications is constantly growing, and it is
feared that one consequence will be an increase in the percent-
age of non-TCP traffic. Since these applications commonly do
not integrate TCP-compatible congestion control mechanisms,
they treat competing TCP flows in an unfair manner: upon
encountering congestion, all contending TCP flows reduce their
data rates in an attempt to dissolve the congestion, while the
non-TCP flows continue to send at their original rate. This
highly unfair situation can lead to starvation of TCP traffic, or
even to a congestion collapse [1], which describes the undesir-
able situation where the available bandwidth in a network is
almost exclusively occupied by packets that are discarded
because of congestion before they reach their destination.

For this reason, it is desirable to define appropriate rate
adaptation rules and mechanisms for non-TCP traffic that are

compatible with the rate adaptation mechanism of TCP.
These rate adaptation rules should make non-TCP applica-
tions TCP-friendly, and lead to a fair distribution of band-
width.

In this article we present a survey of TCP-friendly conges-
tion control schemes to summarize the state of the art in this
field of research and motivate further research on TCP
friendliness. We define TCP friendliness and outline the
design space for TCP-friendly congestion control. Existing sin-
gle-rate protocols are discussed, and a detailed survey of mul-
tirate protocols is given. The article contains an evaluation of
the strengths and weaknesses of the mechanisms presented.
We point to open problems and issues for future research and
give some concluding remarks.

TCP and TCP Friendliness
TCP is a connection-oriented unicast protocol that offers reli-
able data transfer as well as flow and congestion control. TCP
maintains a congestion window that controls the number of
outstanding unacknowledged data packets in the network.
Sending data consumes slots in the window of the sender, and
the sender can send packets only as long as free slots are
available. When an acknowledgment (ACK) for outstanding
packets is received, the window is shifted so that the acknowl-
edged packets leave the window, and the same number of free
slots becomes available.

On startup, TCP performs slowstart, during which the rate
roughly doubles each RTT to quickly gain its fair share of
bandwidth. In steady state, TCP uses an additive increase, mul-
tiplicative decrease (AIMD) mechanism to detect additional
bandwidth and to react to congestion. When there is no indica-
tion of loss, TCP increases the congestion window by 1
slot/RTT. In case of packet loss, indicated by a timeout, the
congestion window is reduced to one slot and TCP reenters
the slowstart phase. Packet loss indicated by three duplicate
ACKs results in a window reduction to half of its previous size.
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Modeling TCP Throughput
The throughput of TCP depends mainly on the parameters
RTT tRTT, retransmission timeout value tRTO, segment size s,
and packet loss rate p. Using these parameters, an estimate of
TCP’s throughput can be derived. A basic model that approxi-
mates TCP’s steady-state throughput T is given by Eq. 1 [1].
This model is a simplification in that it does not take into
account TCP timeouts.

Equation 2, presented in [2], gives an example of a more
complex model of TCP throughput; b is the number of pack-
ets acknowledged by each ACK and Wm is the maximum size
of the congestion window. Unlike the model presented by Eq.
1, the complex model takes into account rate reductions due
to TCP timeouts. Thus, it models TCP more accurately in an
environment with high loss rates.

(1)

(2)

Note, both models assume that the RTT and loss rate are
independent of the estimated rate (i.e., they do not take into
account that changing the rate can affect the RTT and loss rate).
They work well in environments with a high level of statistical
multiplexing such as the Internet, but care has to be taken when
they are used as part of a protocol’s control loop when only a
few flows share a bottleneck link. In that case, changes to the
sending rate alter the conditions at the bottleneck link, which in
turn determine the sending rate through the equation. Such a
feedback loop can render the results of both equations invalid.

TCP Friendliness
In [1], non-TCP flows are defined as TCP-friendly when
“their long-term throughput does not exceed the throughput
of a conformant TCP connection under the same conditions.”
We prefer to use a slightly more restrictive definition of the
term. The definition used throughout this article focuses on
the effect of a non-TCP flow on competing TCP flows rather
than on the throughput of the non-TCP flow.

TCP Friendliness for Unicast — A unicast flow is considered
TCP-friendly when it does not reduce the long-term through-
put of any coexistent TCP flow more than another TCP flow
on the same path would under the same network conditions.

TCP Friendliness for Multicast — A multicast-flow is defined as
TCP-friendly when for each sender-receiver pair, the multicast
flow has the property of being unicast TCP-friendly.

It should be noted that there is an ongoing debate on the
correct definition of TCP friendliness for multicast. An alter-
native to the definition given above is to allow multicast flows
to use a greater amount of bandwidth than unicast flows,
since they serve multiple receivers. In [3] the term bounded
fairness is introduced to define a situation where the following
equation holds true:

a · rTCP £ r £ b · rTCP,

where r is the rate of the multicast flow on the bottleneck
link, rTCP is the rate of a TCP flow under the same conditions,
and a as well as b are functions of the number of receivers of
the flow. For b = 1 the two definitions are equivalent. While
the latter approach is perfectly valid, we prefer the definition
that is more rigid in the protection of competing TCP flows.

With the above definition, TCP friendliness ensures that
coexisting TCP flows are not treated unfairly by non-TCP
flows. Note, however, that this does not necessarily mean that
all TCP and TCP-friendly flows on a bottleneck link receive
the same throughput. Even competing flows that use only
TCP for congestion control will often not receive the same
amount of bandwidth. For example, TCP flows with different
RTTs or different numbers of bottlenecks nodes will transmit
at different rates [4].

Classification of Congestion Control
Schemes
Congestion control schemes can be classified with respect to a
multitude of characteristics. In the following we briefly discuss
various possible classification schemes for TCP-friendly
approaches.

Window-Based vs. Rate-Based
One possible classification criterion for TCP-friendly schemes
is whether they adapt their offered network load based on a
congestion window or on their transmission rate.

Algorithms that belong to the window-based category use a
congestion window at the sender or at the receiver(s) to
ensure TCP friendliness. Similar to TCP, each packet trans-
mitted consumes one slot in the congestion window, while
each packet received or the acknowledgment of a packet
received frees one slot. The sender is allowed to transmit
packets only when a free slot is available. The size of the con-
gestion window is increased in the absence of congestion indi-
cations and decreased when congestion occurs.

Rate-based congestion control achieves TCP friendliness by
dynamically adapting the transmission rate according to some
network feedback mechanism that indicates congestion. It can
be subdivided into simple AIMD schemes and model-based
congestion control. Simple AIMD schemes mimic the behavior
of TCP congestion control. This results in a rate that displays
the typical short-term sawtooth-like behavior of TCP. This
makes simple AIMD schemes unsuitable for continuous media
streams. Model-based congestion control uses a TCP model
such as the one presented in [2] instead of a TCP-like AIMD
mechanism. By adapting the sending rate to the average long-
term throughput of TCP, model-based congestion control can
produce much smoother rate changes that are better suited to
the aforementioned type of traffic. Such schemes do not mimic
TCP’s short-term sending rate but are still TCP-friendly over
longer timescales. However, the congestion control mechanism
may not resemble TCP congestion control, and great attention
has to be paid to the rate adjustment mechanism to ensure fair
competition with TCP or other flows.

Unicast vs. Multicast
TCP friendliness is desirable for both unicast and multicast traf-
fic. However, the design of good multicast congestion control
protocols is far more difficult than the design of unicast proto-
cols. Multicast congestion control schemes ideally should scale to
large receiver sets and be able to cope with heterogeneous net-
work conditions at the receivers. For example, if for all receivers
the sender transmits packets at the same rate, care has to be
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taken as to how the sending rate is decreased in case of network
congestion. This is nontrivial, since in large multicast sessions
receivers may experience uncorrelated loss. It is therefore likely
that most of the transmitted packets are lost to at least one
receiver. If the sender responded to each of these losses by
decreasing the congestion window, the transmission would likely
stall after a certain length of time. This problem is known as the
loss path multiplicity problem [5]. Whenever rate adjustment deci-
sions are based not on congestion information from a specific
receiver but on the overall congestion information present in the
whole distribution tree, protocol performance can suffer consid-
erably if the protocol has not been designed correctly.

Golestani and Sabnani discuss several important aspects of
congestion control for multicast in a general fashion [6]. They
investigate the different properties of rate-based and window-
based approaches. In particular, they show that window-based
congestion control can be TCP-friendly without knowing the
RTT, whereas rate-based congestion control does need this
information in order to be TCP-friendly. This is an important
insight, since RTTs are difficult to obtain in a scalable fashion
for multicast communication without support from the network.

Single-Rate vs. Multirate
A common criterion for classifying TCP-friendly multicast
congestion control protocols is whether they operate at a sin-
gle rate or use a multirate approach. Obviously, unicast trans-
port protocols are confined to single-rate schemes. In
single-rate schemes, data is sent to all receivers at the same
rate. This limits the scalability of the mechanism, since all
receivers are restricted to the rate that is TCP-friendly for the
bottleneck receiver.

Multirate congestion control protocols allow for a more flexi-
ble allocation of bandwidth along the different network paths.
Such schemes scale better to large receiver sets where increased
heterogeneity among receivers is to be expected. A typical
approach to multirate congestion control is to use layered multi-
cast: a sender divides the data into several layers and transmits
them to different multicast groups. Each receiver can individual-
ly select to join as many groups as permitted by the bandwidth
bottleneck between that receiver and the sender. The more
groups a receiver joins, the better the quality of its reception.
For a video transmission an increased number of received layers
may improve the video quality, while for reliable bulk data
transfer additional layers may decrease the transfer time.

With layered multicast, congestion control is performed indi-
rectly by the group management and routing mechanisms of the
underlying multicast protocol. In order for this mechanism to
be effective, it is crucial to coordinate join and leave decisions
of receivers behind a common bottleneck: if only some receivers
leave a layer while others stay subscribed, no pruning is possible
and congestion cannot be reduced. In addition, receivers do not
make efficient use of the multicast layers when they are not
subscribed to a layer that is already present in their subpart of
the routing tree. They could receive data at a higher rate at no
additional cost. Therefore, receivers that share a bottleneck link
should synchronize their decisions to join and leave layers. The
leave latency is another issue of concern: pruning of the multi-
cast tree upon receipt of leave messages for a layer can take
considerable time, on the order of several seconds.

End-to-End vs. Router-Supported
Many of the TCP-friendly schemes proposed are designed for
best effort IP networks that do not provide any additional
router mechanisms to support the protocols. Thus, they can
readily be deployed in today’s Internet. These schemes are
called end-to-end congestion control. They can be further sep-
arated into sender-based and receiver-based approaches.

In sender-based approaches the sender uses information
about the network congestion and adjusts the rate or window
size to achieve TCP friendliness. The receivers only provide
feedback, while the responsibility of adjusting the rate lies
solely with the sender.

Receiver-driven congestion control is usually used together
with layered congestion control approaches. Here, the receivers
decide whether to subscribe or unsubscribe from additional
layers based on the congestion situation of the network.

The design of congestion control protocols and particularly
fair sharing of resources can be considerably facilitated by
placing intelligence in the network (e.g., in routers or separate
agents). Congestion control schemes that rely on additional
functionality in the network are called router-supported. Partic-
ularly multicast protocols can benefit from additional network
functionality such as feedback aggregation, hierarchical RTT
measurements, management of (sub)groups of receivers, or
modification of the routers’ queuing strategies. Generic router
assist (GRA) [7], for instance, is a recent initiative that pro-
poses general mechanisms located at routers to assist trans-
port control protocols, which would greatly ease the design
and implementation of effective congestion control protocols.

Furthermore, end-to-end congestion control has the disad-
vantage of relying on the collaboration of the end systems.
Experience in the current Internet has shown that this cannot
always be assumed: greedy users or applications may use non-
TCP-friendly mechanisms to gain more bandwidth. As dis-
cussed by Floyd and Fall in [1], some form of congestion
control should be enforced by routers in order to prevent con-
gestion collapse. The authors present router mechanisms to
identify flows that should be regulated: for instance, when a
router discovers a flow which does not exhibit TCP-friendly
behavior, the router might drop the packets of that flow with
a higher probability than the packets of TCP-friendly flows.
While ultimately fair sharing of resources in the presence of
unresponsive or non-TCP-friendly flows can only be achieved
with router support, this mechanism is difficult to deploy,
since changes to the Internet infrastructure take time and are
costly in terms of money and effort.

Classification Scheme
In the following sections we use the scheme shown in Fig. 1 to
classify the different approaches. This classification distin-
guishes between single-rate and multirate congestion control
at the top level and rate-based vs. window-based congestion
control at the second level.

Single-Rate Congestion Control Protocols
In this section a selection of single-rate congestion control
protocols is presented. A more complete overview can be
found in the corresponding technical report [8].

Rate-Based Approaches
Many rate-based congestion control protocols mimic TCP’s
AIMD behavior to achieve TCP fairness, while others implic-
itly or explicitly adjust their rate according to a model of TCP
traffic. A very obvious approach to TCP-friendly congestion
control is to directly apply TCP’s congestion control mecha-
nism, but without the associated reliability mechanism. Early
work in this area was presented in [9], where this approach is
used to adjust the rate of a unicast video stream in order to
adequately react to congestion.

RAP — The Rate Adaption Protocol (RAP) presented in [10]
is a simple AIMD scheme for unicast flows. Each data packet
is acknowledged by the receiver. The ACKs are used to detect
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packet loss and infer the RTT. When the protocol experi-
ences congestion it halves the sending rate. In periods with-
out congestion, the sending rate increases by 1 packet/RTT,
thus mimicking the AIMD behavior of TCP. The decisions
on rate increase or decrease are made once per RTT. To
provide additional fine-grained delay-based congestion
avoidance, the ratio of a short-term RTT average and a
long-term RTT average is used to modify the interpacket
gap between consecutive data packets. These fine-grained
rate adjustments result in a smoother sending rate.

RAP achieves rates similar to TCP in an environment
where TCP experiences no or few timeouts since RAP’s
rate reductions resemble TCP’s reaction to triple duplicate
ACKs. However, RAP does not take timeouts into account
and is therefore more aggressive when TCP’s throughput
is dominated by timeout events.

LDA+ — Unlike many of the other schemes, the Loss-Delay
Based Adaption Algorithm (LDA+) [11] does not devise its
own feedback mechanism to control the sending rate but
relies solely on the Real-Time Transport Control Protocol
(RTCP) feedback messages provided by the Real-Time Trans-
port Protocol (RTP) [12]. While LDA+ is essentially an AIMD
congestion control scheme, it uses some interesting additional
elements. The increase and decrease factors for AIMD are
dynamically adjusted to the network conditions. An estimate of
the bottleneck bandwidth is obtained using packet pairs.1 The
amount of additive increase is then determined as the mini-
mum of three independent increase factors to ensure that:
• Flows with a low bandwidth can increase their rate faster

than flows with a higher bandwidth.
• Flows do not exceed the estimated bottleneck bandwidth.
• Flows do not increase their bandwidth faster than a TCP

connection.
If receivers report loss, the sending rate is decreased by

multiplying by the factor 1 – ÷(l), where l is the loss rate.
Additionally, the rate is reduced at most to the rate given by
the TCP model as described in Eq. 2. Using the maximum of
the AIMD rate and the equation rate may result in a long-
term average that exceeds the average rate of the two sepa-
rate schemes and can be more aggressive than TCP. While
LDA+ is designed only for unicast communication, a protocol
variant called MLDA can be used for multicast environments.
MLDA is discussed later.

Simulations and network experiments the authors conduct-
ed show that LDA+ competes fairly with TCP in the investi-
gated environments. The authors claim that the slow rate
increase of LDA+ compensates for the fact that the rate is at
most decreased to the throughput estimate of the complex
TCP model. Using an existing report mechanism facilitates
deployment of LDA+. Furthermore, LDA+ adapts its rate
increase to prevent overshooting the bottleneck bandwidth.
However, RTCP reports are generated infrequently (usually
within several seconds). This makes LDA+ slow to react to
changes in network conditions. Furthermore, the smallest loss
rate standard RTCP can report is limited. In environments
with a lower (but positive) loss rate, RTCP reports zero loss
and LDA+ may claim more than its fair share of bandwidth.

TFRC — The TCP-Friendly Rate Control Protocol (TFRC)
[13] evolved from the TFRCP protocol [14]. It is specified for
unicast communication, although with some modifications it

can be adapted to multicast. Similar to TFRCP, it adjusts its
sending rate based on the complex TCP equation, Eq. 2, but
uses more sophisticated methods to gather the necessary
parameters. Several requirements for a loss rate estimator are
formulated, and the authors settle on the average loss interval
method which best fulfills these requirements. The loss rate is
measured in terms of loss intervals, spanning the number of
packets between consecutive loss events. A certain number of
loss intervals is averaged, using decaying weights so that old
loss intervals contribute less to the average. The loss rate is
calculated as the inverse of the average loss interval size. The
authors provide additional mechanisms to prevent the loss
rate from reacting too strongly to single loss events and to
ensure that the loss rate adapts quickly to long intervals with-
out any losses. The RTT is measured by the standard method
of feeding back timestamps to the sender.

Immediately after startup, the sender goes into a slowstart
phase similar to TCP slowstart to quickly increase the rate to
a fair share of the bandwidth. TFRC slowstart is terminated
with the first loss event. Once per RTT the TFRC receiver
updates its parameters and sends a state report to the sender.
The sender then computes a new fair rate from these parame-
ters and adjusts the sending rate accordingly. To improve pro-
tocol performance in environments that do not fulfill the
assumptions of the complex TCP equation, TFRC supports
additional delay-based congestion avoidance by adjusting the
interpacket gap (i.e., the time interval between consecutive
data packets).

A major advantage of TFRC is that is has a relatively stable
sending rate while still providing sufficient responsiveness to
competing traffic.

TEAR — TCP Emulation at Receivers (TEAR) [15] is a hybrid
protocol that combines aspects of window-based and rate-
based congestion control. TEAR receivers calculate a fair
receive rate which is sent back to the sender, who then adjusts
the sending rate. To this end, the receivers maintain a conges-
tion window that is modified similarly to TCP’s congestion
window. Since TCP’s congestion window is located at the
sender, a TEAR receiver has to try to determine from the
arriving packets when TCP would increase or decrease the
congestion window size. Additive increase and window reduc-
tions caused by triple duplicate ACKs are easy to emulate.
However, due to the lack of ACKs, timeout events can be
estimated only roughly.

In contrast to TCP, the TEAR protocol does not directly
use the congestion window to determine the amount of data

■ Figure 1. A classification scheme for TCP-friendly protocols.
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to send but calculates the corresponding TCP sending rate.
This rate is roughly a congestion window worth of data per
RTT. To avoid TCP’s sawtooth-like rate shape, TEAR aver-
ages the rate over an epoch, which is defined as the time
between consecutive rate reduction events. To prevent further
unnecessary rate changes caused by noise in the loss patterns,
a smooth rate is determined by using a weighted average over
a certain number of epochs for the final rate. This value is
then reported to the sender, which adjusts the sending rate
accordingly. Since the rate is determined at the receivers and
TEAR refrains from acknowledging packets, it can be used
for multicast as well as for unicast communication, provided a
scalable scheme to determine the RTT and report the rates is
used in the multicast case. For multicast congestion control,
the TEAR sender has to adapt the rate to the minimum of
the rates reported by the receivers.

Due to the close modeling of TCP’s short-term behavior,
TEAR shows TCP-friendly behavior while avoiding TCP’s fre-
quent rate changes.

Window-Based Approaches
The domain of window-based unicast congestion control is
well covered by TCP. There are two main problems that have
to be solved in order to use window-based congestion control
for multicast. First, protocols should prevent drop-to-zero of
the rate due to the aforementioned loss path multiplicity
problem. The second problem is how to free slots in the con-
gestion window. Clearly it is not possible for the sender to
receive ACKs for each packet from each receiver, since this
would cause an ACK implosion.

In the following we will present several window-based con-
gestion control approaches for multicast transmission. In par-
ticular, we will focus on how the two main problems are
solved for each.

A Framework for Window-Based Congestion Control —
Golestani and Sabnani propose to use a window-based
approach where each receiver keeps a separate congestion
window adjusted similar to the congestion window of TCP [6].
From the size of the window and the number of outstanding
packets, each receiver calculates the highest sequence number
it is able to receive without claiming an unfair amount of
bandwidth.

This information needs to be communicated to the sender
without causing a feedback implosion. As an example of how
this can be done, the authors show that a tree structure
formed by the receivers or other intermediate systems can be
used to aggregate the information: each node takes the mini-
mum sequence number contained in all incoming messages
and forwards this sequence number to its parent. When the
aggregated information reaches the sender, it is allowed to
send packets up to the minimum sequence number it has
received. Each receiver maintains its own congestion window,
which circumvents the loss path multiplicity problem.

The observations made by Golestani and Sabnani form a
theoretical background for window-based multicast congestion
control. They need to be concretized by actual algorithms
such as those that follow.

RLA and LPR — The Random Listening Algorithm (RLA) pro-
posed by Wang and Schwartz [3] extends TCP selective ACK
(SACK) by introducing some enhancements for multicast. For
each receiver, the multicast sender stores the smoothed RTT
and the measured congestion probability. A loss is detected by
the sender via identification of discontinuous ACKs or via
timeout. Based on these loss indications, the number of
receivers n with a high congestion probability is tracked. If

congestion is detected, the window is halved in the following
two cases:
• If the previous window cut was made too long ago (the

authors propose an interval of twice the moving average of
the window size times the smoothed RTT of the corre-
sponding receiver)

• If a generated uniform random number p is less than or
equal to 1/n

When a packet has been acknowledged by all receivers, the
congestion window cwnd is incremented by 1/cwnd, identical
to TCP. A TCP-like retransmission scheme with fast recovery
is also included in RLA. With the above mechanisms, RLA
avoids the loss path multiplicity problem, while achieving sta-
tistical long-term fairness. In [3] it is demonstrated that RLA
is fair to TCP according to the definition of bounded fairness.

Linear Proportional Response (LPR), proposed by Bhat-
tacharyya, Towsley, and Kurose [16], is a probabilistic loss
indication filtering scheme that is an improvement over the
corresponding RLA mechanism. The probability with which a
multicast source reduces its congestion window size is propor-
tional to the loss probability at the receiver; that is, the win-
dow size is halved when p is smaller than

where Xi is the number of losses at receiver i. The LPR
scheme achieves better fairness of multicast sessions toward
competing unicast sessions than does the window adjustment
indication scheme of RLA. Even though we are not aware of
any extensive measurements in real scenarios, the mathemati-
cal proofs and simulations in [16] give strong evidence that
when combined with the window adjustment mechanism of
RLA, LPR achieves good TCP friendliness.

MTCP — Multicast TCP (MTCP) [17] is a reliable multicast
protocol that uses window-based congestion control to achieve
TCP friendliness. MTCP groups the session participants into a
logical tree structure where the root of the tree is the sender of
the data. A parent in the logical tree structure stores a received
packet until receipt is acknowledged by all of its children. Upon
receiving a packet, a child (which may be a parent for other
participants) transmits an ACK to its parent using unicast.

To control congestion, MTCP requires that each parent
maintain two values: a congestion window and a transit win-
dow. The size of the congestion window is managed similarly
to that of TCP, including slow-start and congestion avoidance.
The main differences to TCP are:
• The congestion window is only incremented when ACKs

from all children have been received.
• A packet is immediately (re)transmitted to a child if it indi-

cates via a negative ACK (NACK) that it has not yet
received the packet.

The size of the congestion window is halved when any child
reports three consecutive NACKs or set to one when a time-
out occurs because a child has not acknowledged a packet at
all. The transit window keeps track of the amount of data the
children of a parent node have not yet acknowledged.

With each ACK, a parent node transmits a congestion sum-
mary to its own parent. This congestion summary contains the
minimum of its own congestion window size and those report-
ed by its children, as well as the maximum of its own transit
window size and those reported by its children. The sender is
then allowed to transmit the difference between the minimum
congestion window size and the maximum transit window size.

In MTCP, the loss path multiplicity problem is avoided by
means of the aggregation at the intermediate nodes. Each
node forwards the information about the bottleneck link of its

X Xi jj
n/ =1Â ,
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children to its parent. Therefore, the sender will receive infor-
mation about the overall bottleneck link rather than about
uncorrelated packet loss. The main drawback to MTCP is its
complexity and required setup of a tree structure where each
node has to perform package storage, repair, and congestion
monitoring functionality.

NCA and pgmcc — Nominee-Based Congestion Avoidance
(NCA) presented in [18] and pragmatic general multicast con-
gestion control (pgmcc) [19] are two approaches to congestion
control that share the same fundamental idea: they select as a
group representative the bottleneck receiver with the worst
network connection. This receiver acknowledges every packet
received and thereby allows the sender to use a TCP-style
congestion control algorithm. It is important to note that in
this approach congestion control and packet repair are treated
independent of each other. Thus, the approach can be used in
combination with a large number of mechanisms that establish
reliability, as well as for unreliable data transmission.

The most challenging aspect of NCA and pgmcc is how to
select the group representative. In both approaches, each
receiver calculates the data rate at which it is able to receive by
using a simple TCP rate formula. This formula takes into
account the RTT and the loss rate experienced by the receiver.
The information about the acceptable rate is conveyed back to
the sender either piggybacked on NACKs (pgmcc) or accumu-
lated in a tree structure of routers that always forward the
report of the participant with the lowest acceptable data rate
(NCA). From those reports the sender selects as the represen-
tative the participant with the lowest acceptable rate and uses
a TCP-like congestion control mechanism to this participant.

This approach seems very promising, since it closely mimics
the behavior of unicast TCP and therefore should lead to fair-
ness with regard to TCP flows if the proper representative is
chosen. The main problem is that the selection process is
based on a rough estimate of the acceptable data rate. Fur-
ther insight is needed as to whether network conditions exist
where the wrong representative is selected. This could lead to
unfair behavior against other flows. The author of pgmcc indi-
cates that this may occur when a set of receivers has lossy
links with a low RTT and congested links with a high RTT.

Multirate Congestion Control Protocols
In the following, a selection of promising multirate congestion
control protocols is presented. Again, for a more complete
overview please refer to [8].

Rate-Based Approaches
One of the first working examples of layered multicast trans-
mission in the Internet was Receiver-Driven Layered Multicast
(RLM) for the transmission of video, developed by McCanne,
Jacobson, and Vetterli [20]. Their work did not focus on TCP
friendliness but on how to provide each receiver with the best
possible video quality in dependence on the bandwidth avail-
able between the sender and that receiver. In RLM the sender
splits the video into several layers. A receiver starts receiving
by subscribing to the first layer. When the receiver does not
experience congestion in the form of packet loss for a certain
period of time, it subscribes to the next layer. This is called a
join experiment. When a receiver experiences packet loss, it
unsubscribes from the highest layer it is currently receiving.

The use of RLM to control congestion is problematic since
RLM’s mechanism of adding or dropping a single layer based
on the detection of packet loss is not TCP-friendly and can
result in an unfair distribution of bandwidth among concur-
rent RLM sessions. Furthermore, leaving a multicast group

may take a significant amount of time, usually on the order of
several seconds. Failed join experiments (i.e., a receiver join-
ing a layer immediately has to leave again because the neces-
sary bandwidth is not available) are therefore very costly in
terms of the additional congestion they may cause. As men-
tioned earlier, in order for layered schemes to be efficient, it
is imperative that receivers behind the same bottleneck syn-
chronize their join and leave decisions. Several protocols have
been developed that improve the original concept of RLM.

RLC — Vicisano, Crowcroft, and Rizzo address most of these
problems in their work on Receiver-Driven Layered Conges-
tion Control (RLC) [21]. They propose to dimension the lay-
ers so that the bandwidth consumed by each new layer
increases exponentially. Layer 1, for example, carries twice as
much data in the same amount of time as layer 0. The time a
receiver has to wait before being allowed to join a new layer
also increases exponentially with each additional layer. On the
other hand, a layer is dropped immediately when congestion
becomes apparent in form of packet loss. This emulates the
behavior of TCP since the increase in bandwidth is propor-
tional to the amount of time required to pass without packet
loss before being allowed to join the layer. At the same time
the reaction to congestion is a multiplicative decrease, since
dropping one layer results in halving the overall receive rate.

To improve synchronization between receivers, receivers
may join a layer only at so-called synchronization points (SPs).
SPs in higher layers are exponentially less frequent than in
lower layers (Fig. 2). Thus, a receiver that has only subscribed
to a small number of layers is likely to catch up with receivers
with a higher subscription level. After some time, receivers
that share the same bottleneck should be joining and leaving
layers synchronously. In order to decrease the likelihood that
a join experiment will fail, the RLC sender creates a short
burst period before an SP. During this burst period the data
rate is doubled in each layer. Only if a receiver does not expe-
rience any signs of congestion during the burst is it allowed to
join the next higher layer.

Despite the improvements in the congestion control mecha-
nism over RLM, RLC still has some drawbacks. The granular-
ity at which the rate can be adapted to the network conditions
is very coarse and may cause unfair behavior. The exponential
distribution of the layers only allows doubling or halving the
receive rate. The second problem is that the transmitted data
must support layering. While this is true for video and bulk
data transmission, streams that are more interactive like those
produced by shared whiteboards cannot easily be separated
into multiple layers. RLC does not take the RTT into account
when determining the sending rate. This can lead to unfair-
ness toward TCP since TCP is biased against connections with
a high RTT. Furthermore, it is not guaranteed that the artifi-
cial bursts of packets introduced by RLC are acceptable for a
broad range of applications that support layered transmission.
A general point of controversy that applies to all layered con-
gestion control schemes is whether it is acceptable to “abuse’’
network mechanisms like multicast routing to achieve trans-
port layer functionality like congestion control.

FLID-DL — To address some of the deficiencies of RLC, Byers
et al. propose Fair Layered Increase/Decrease with Dynamic
Layering (FLID-DL) [22]. The protocol uses a digital fountain
[23] at the source. With digital fountain encoding, the sender
encodes the original data and redundancy information such
that receivers can decode the original data once they have
received a fixed number of arbitrary but distinct packets.
Since it is not necessary to ensure delivery of specific packets,
the layering scheme is much more flexible.
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FLID-DL introduces the concept of dynamic layering to
reduce the join and leave latencies associated with adding or
dropping a layer. With dynamic layering, the bandwidth con-
sumed by a layer decreases over time. Thus, a receiver has to
periodically join additional layers to maintain its receive rate.
The receive rate is reduced simply by not joining additional
layers, whereas rate increase requires joining multiple layers.
To reduce the total number of layers required by the mecha-
nism, layers are reused after a quiet period where no data has
been transmitted over the layers for a certain amount of time.
This scheme provides an elegant solution to avoiding the
effect of long leave latencies, provided that the quiet period is
sufficient for normal leave operations to take effect.

Dynamic layering is complemented by an FLID scheme
which results in a receive rate that is fair to a TCP flow with a
fixed RTT experiencing the same loss rate. FLID retains
RLC’s concepts of sender-initiated synchronization points to
coordinate receivers but refrains from packet bursts to probe
for available bandwidth. FLID uses probabilistic increase sig-
nals such that receivers subscribe to additional layers only
with a certain probability. These probabilities are chosen so as
to achieve a rate compatible with TCP.

The FLID-DL protocol is a considerable improvement over
RLC and can be considered to be state of the art for layered
congestion control. It does not suffer from long leave laten-
cies and is more flexible with regard to the bandwidth distri-
bution on the layers. However, like RLC, FLID-DL does not
take into account the RTT and thus exhibits unfair behavior
toward TCP under certain network conditions. It also results
in major overhead for the underlying multicast routing proto-
col since join and leave decisions occur much more frequently.

LTS and TFRP — Two similar congestion control protocols for
the transmission of video streams are presented by Turletti et
al. and Tan and Zakhor. The Layered Transmission Scheme
(LTS) [24] and the TCP-Friendly Transport Protocol (TFRP)
[25] both refrain from join experiments to probe for available
bandwidth, using instead the simple TCP Eq. 1 to adjust the
rate. Receivers simply adjust their subscription level to the rate
given by the equation. The necessary parameters of loss rate
and RTT are measured at the receivers in a straightforward
fashion. While these protocols are easy to implement, they suf-
fer from a multitude of drawbacks. Tan and Zakhor do not
address the problem of how to measure the RTTs to the
receivers in a scalable way. In LTS, the RTTs are measured
simply by having the receivers send RTT request messages to
the sender, which then multicasts the timestamps contained in
those messages back to all receivers. This can pose a problem
for very large receiver sets. The simple TCP equation gives
only a reasonable estimate of TCP throughput under low loss
rates. To prevent rate oscillations, it is necessary to accurately
measure and smoothe loss and RTT values through filtering.

MLDA — The Multicast Loss-Delay Based Adaption Algo-
rithm (MLDA) [26] is a congestion control protocol that uses
layered multicast. It builds on the previously discussed LDA+
protocol, also using RTCP reports for the signaling between
the sender and the receivers. MLDA retains the increase and
decrease behavior of LDA+ but performs the rate calculation
at the receivers. The receivers report the rate to the sender,
avoiding feedback implosion by using exponentially distribut-
ed timers. The sender continuously adjusts the bandwidth dis-
tribution of the layers to support the reported rates.
Independently, the receivers adjust their subscription level to
the appropriate receive rate. Thus, MLDA combines the two
concepts of sender- and receiver-based congestion control. To
calculate the rate, the RTT has to be measured at the
receivers. The authors present a complex mechanism to
obtain sufficiently accurate RTT estimates in the face of very
infrequent RTCP reports. At certain points in time, a receiver
measures the RTT using the well-known scheme of having the
sender feed back a timestamp value. This accurate measure-
ment is then continuously modified using the one-way delay
between the sender and the receiver. The authors take a pos-
sible offset between the clocks at sender and receiver into
account and filter out irregularities in the one-way delay esti-
mates.

The authors demonstrate the TCP-friendly behavior of
MLDA through extensive simulations and compare the per-
formance of their protocol to that of other layered congestion
control schemes. By reducing the rate on a layer that causes
congestion rather than waiting for all receivers behind a bot-
tleneck to leave the corresponding multicast group, MLDA
can react to congestion faster than other layered schemes. A
major disadvantage of MLDA is the complexity of the proto-
col and the added complexity of the application that has to
distribute the data onto the dynamic layers.

Window-Based Approaches
Rainbow — Rainbow [27] is a window-based congestion con-
trol scheme for the reliable transfer of bulk data. Like FLID-
DL, the data is encoded using a digital fountain. Thus, it is
not important what specific packets a receiver gets, but only
how many distinct packets it receives.

The key idea of Rainbow is that receivers individually
request the transmission of each data packet. Each receiver
keeps a congestion window, and each request is marked with a
label that essentially indicates the position of the request in
the congestion window. If multiple requests with the same
label arrive from distinct receivers, these requests are accumu-
lated by intermediate routers. In addition, the routers store
information about the requests they have received. This pro-
cess is shown in Fig. 3. The router that is closest to the sender
delivers the requests to the sender, which in turn sends a
packet in response to each request. The packets are forward-
ed by the routers in the reverse direction of the requests. The
routers delete the information about requests as the packet is
forwarded toward the receivers. Thus, this congestion control
scheme relies heavily on additional intelligence in the routers.

The congestion window in the receivers imitates the behavior
of the TCP congestion window. When a data packet arrives
with a label that falls in the current congestion window, a new
request is immediately transmitted. The congestion window size
is either increased by one for each data packet received (during
slowstart) or increased by one when a full congestion window
has been received (during congestion avoidance). When a pack-
et loss is detected, the window size is halved.

Rainbow is currently the only window-based congestion
control approach that allows participants to receive data at
different rates. This behavior is made possible by the special

■ Figure 2. Synchronization points in RLC.
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encoding of the data and the individual
requests for data transmitted by each
participant. There are two main limita-
tions of Rainbow:
• It must be possible to use digital foun-

tain encoding for the data.
• The routers must support the accumu-

lation and storage of requests.

Protocol Evaluation
Which congestion control mechanism is
suitable for a given task depends mostly
on the network characteristics and the
traffic requirements of the sending appli-
cation.

In a controlled environment such as a
company’s intranet it is possible to imple-
ment solutions that require changes to
the network infrastructure. However,
deployment of these mechanisms in the global Internet is a
much more difficult task that consumes time and is very cost-
ly. Thus, such solutions are likely to be used only if they offer
vastly improved performance over solutions that can be used
with today’s Internet infrastructure. Among protocols that fall
into the former category are tree-based protocols such as
MTCP, and protocols that use a multicast service other than
standard IP multicast such as Rainbow.

The same considerations hold true for protocol complexity.
The higher the complexity, the better the performance and
fairness should be to justify the additional overhead. Simple
rate-based AIMD schemes such as RAP require the least
complexity but have the same large variations in the data rate
as TCP. Furthermore, if they rely only on AIMD but do not
take TCP timeouts into account, their TCP-friendliness is very
limited. Because of the similarity of the congestion control
mechanism, window-based congestion control schemes gener-
ally show good TCP friendliness. Their complexity, with
regard to the congestion control mechanism, is comparable to
rate-based AIMD schemes.

Model-based congestion control schemes require a moder-
ately higher amount of complexity. In addition to the computa-
tion of the model, the measurement of the necessary
parameters in a fashion that avoids unwanted behavior (e.g.,
rate oscillations) adds to the complexity, even more so in multi-
cast environments. Schemes based on the simple TCP equation
will estimate a sending rate that is too high in very lossy envi-
ronments and thus will be more aggressive than TCP. Model-
based schemes may fail to produce a fair sending rate when the
network conditions do not comply with the assumptions made
for the network model on which the equation is based.

Receiver and sender complexity can be reduced by moving
intelligence into the network. However, as mentioned before,
increased complexity in the network is even less desirable than
increased complexity at the receivers and the sender. Usually,
such router support is used for feedback suppression and for
scalable aggregation of protocol information.

The layering of data further increases the level of complexi-
ty since the sender has to split up the original data, and the
receivers again have to merge the layers they receive. While
the overall throughput of a layered congestion control scheme
is higher than that of a scheme that adapts to the worst
receiver, it pays the price of reduced responsiveness. The
mechanism of joining and leaving layers was not intended for
congestion control. The long leave latencies of IP multicast
prevent quick reaction to congestion unless an additional
mechanism like dynamic layering is used. Furthermore, the

granularity of the rate modification of
layered schemes is very low compared to
that of single-rate schemes. However, for
very large heterogeneous receiver sets
only multirate protocols provide a viable
mechanism of rate control. Single-rate
protocols suffer too much from their
adaptation to the worst receiver in such
environments.

The efficiency of layered schemes also
depends on the type of underlying multi-
cast routing protocol. While they work
well with dense-mode multicast routing,
sparse-mode routing protocols such as
PIM-SM [28] can be problematic. In
PIM-SM, the distribution tree for a
group can change from a core-based tree
(or rendezvous point tree) to a shortest
path tree in the course of a session. This,
combined with frequent joining and leav-

ing of layers for congestion control, may result in unstable
behavior.

The requirements of delay- and bandwidth-sensitive data
streams make rate-based approaches more suitable than win-
dow-based approaches for applications that transmit audio or
video. However, use of a rate-based congestion control
scheme does not guarantee a smooth sending rate. For exam-
ple, the sending rate of AIMD schemes resembles that of
TCP and is thus not very suitable for applications requiring a
stable sending rate.

Table 1 shows the main characteristics of the presented
protocols. It classifies the protocols according to whether they
support multicast and with regard to the type of their conges-
tion control mechanism. Protocols that work end to end can
be completely implemented in the end nodes and do not need
additional support from the network. The complexity rating in
the table takes into account only the complexity of the conges-
tion control mechanism. Note that the overall complexity of
the protocols also includes additional complexity required in
the network or for layering of the data. The next column indi-
cates whether the protocol can be used for applications that
rely on a relatively stable sending rate. The rating refers to
protocol behavior in steady state, given a static environment
with periodic loss. Smoothness of the rate in real network
environments depends largely on responsiveness and the spe-
cific parameters used for the increase and decrease mecha-
nism; it is therefore difficult to predict. Generally, protocols
with a “sawtooth-like’’ sending rate will show more rate oscil-
lations. Smoothness for layered protocols depends on the
number of layers used and the bandwidth distribution among
them. Most layered protocols use a relatively small number of
layers, which results in wide variations in the sending rate.
TCP throughput degrades with higher RTTs. For that reason,
a protocol that wants to comply with TCP throughput has to
be biased against high-RTT connections. The RLC and FLID-
DL protocols do not exhibit this bias and can thus be unfair,
as explained in the detailed sections about the protocols.2 The
TCP friendliness rating is based on the evaluation by the
authors of the protocol and on theoretical considerations such
as whether the protocol takes TCP timeouts into account or
has a rate increase that is more aggressive than that of TCP.
Unfortunately, there exists no direct comparison of TCP-

■ Figure 3. Rainbow.
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2 Some research is concerned with removing TCP’s bias against high
RTTs. If those efforts turn out to improve TCP’s behavior, the aforemen-
tioned protocols would be fair to TCP.
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friendly congestion control schemes in the form of standard-
ized simulations. Therefore, this rating is — to a certain
degree — subjective. Protocols rated “good’’ are expected to
show no signs of unfair behavior toward TCP. Protocols rated
“acceptable’’ are likely to show good TCP friendliness in gen-
eral, but may be problematic in special cases. The “limited
TCP friendliness’’ rating was given to protocols where there
are clear signs of unfair behavior toward TCP also under not
so unusual network conditions (e.g., high loss rates).

Areas of Future Research
As is always the case with an evolving research area, several unre-
solved issues remain. One particular problem is the lack of stan-
dard methods to compare congestion control protocols. Thus, an
evaluation as in the previous section is often based on hints given
in the corresponding papers and quite a bit of guesswork. A test
environment (the ns network simulator comes to mind) with a
standardized suite of test scenarios that investigate different
important aspects such as fairness and scalability, combined with
measures to directly compare the protocol performance, would be
very handy. While such a testbed is not sufficient to explore all
details of a specific protocol, it would provide a reasonable basis
for more objective comparisons of the protocols.

In many cases the simulation scenarios presented by the
developers of a protocol concentrate on a few general scenar-
ios and are often too simple to capture protocol behavior in
nonstandard situations. Claims about a protocol that are
based purely on simulation results should be taken with a
grain of salt. Traffic conditions in the Internet are too com-
plex to be modeled in all aspects in a network simulator, mak-
ing it important to evaluate protocols under real-world
conditions as well.

We already discussed the characteristics of single-rate and lay-
ered congestion control. It may well be possible that different
forms of congestion control are viable — maybe with router sup-
port — that do not exhibit the disadvantages of these approaches
(e.g., the possibility of different rates to the receivers without the
coarseness of layering and long leave latencies).

While TCP friendliness is a useful fairness criterion in today’s
Internet, it is well possible that future network architectures (in
which TCP is no longer the predominant transport protocol)
will allow or require different definitions of fairness. Also, fair-
ness definitions for multicast are still subject to research. We
presented one possible definition and also briefly addressed a
different form where multicast flows are allowed to consume a
higher percentage of bandwidth than are unicast flows, but these
are by no means the only possible fairness definitions.

A further area of research is the improvement of the mod-
els for TCP traffic that are used for some of the rate-based
congestion control mechanisms. Current TCP formulae are
based on several assumptions that are often not met in real-
world environments.

One aspect of congestion control that is not directly rele-
vant to the traffic discussed in this article (i.e., streaming
media traffic) but highly relevant to congestion control in gen-
eral is how to treat short-lived flows that consist only of a few
data packets. TCP congestion control, as well as the conges-
tion control schemes presented in this article, require that
flows persist for a certain amount of time; otherwise, those
forms of congestion control are meaningless.

Many current congestion control protocols are still in the
developmental phase, and little attention is paid to the fact
that not all receivers share the same goal as the sender. It has
been shown that conformant TCP senders can easily be
tricked into sending at a higher rate by modifying the TCP

■ Table 1. Characteristics of the presented congestion control protocols.

Single-rate

RAP Unicast Rate End-to-end Low Sawtooth Yes Limited

LDA(+) Unicast Rate End-to-end High Sawtooth Yes Acceptable

TFRC Unicast Rate End-to-end Medium Smooth Yes Good

TEAR Multicast Rate End-to-end Low Smooth Yes Good

RLA & LPR Multicast Window End-to-end Low Sawtooth Yes Good

MTCP Multicast Window End-to-end Low Sawtooth Yes Good

NCA Multicast Window Required Low Sawtooth Yes Good

PGMCC Multicast Window Required Medium Sawtooth Yes Good

Multirate

RLC Multicast Window Optional Medium Sawtooth Yes Good

FLID-DL Multicast Rate End-to-end Medium Layer-dependent No Acceptable

LTS Multicast Rate End-to-end High Layer-dependent No Acceptable

TFRP Multicast Rate End-to-end Medium Layer-dependent Yes Acceptable

MDLA Multicast Rate End-to-end Medium Layer-dependent Yes Acceptable

Rainbow Multicast Rate End-to-end High Layer-dependent Yes Acceptable

Protocol Unicast/ Congestion Network support Protocol Smoothness of Bias TCP friendliness
multicast control complexity the rate against

mechanism high RTTs
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receiver [29]. The same holds true for most of the protocols
presented here. Only single-rate multicast protocols with large
receiver sets are usually immune since a single receiver that
claims to be able to receive at a higher rate than it actually is
will simply not contribute to the congestion control process.
Before the large-scale deployment of new protocols it is nec-
essary to also investigate the aspect of malicious receivers.

The form of congestion control that will eventually be used,
be it end to end, router supported, or a hybrid of both,
depends largely on if or when such support will be made avail-
able by router manufacturers. First efforts in the direction of
router support are evidenced by the experiments of a major
router manufacturer with the Pragmantic General Multicast
protocol (PGM).

Conclusions
With this work, we present a survey on recent advances in the
area of TCP-friendly congestion control. We discuss the need
for TCP-friendly congestion control for both non-TCP-based
unicast traffic and multicast communication, and give an
overview of the design space for such congestion control
mechanisms.

Throughout the article we analyze various approaches that
provide TCP friendliness, by either restricting all receivers in
such a way that TCP friendliness is achieved for the worst
receiver (single-rate) or adapting the rate of each receiver
individually in a TCP-friendly manner (multirate). Further-
more, we classified the protocols according to the type of
their congestion control mechanism and their need for net-
work support.

We believe that given the queuing and forwarding mecha-
nisms of the current Internet, TCP friendliness is essential for
end-to-end transport protocols. Eventually, router mecha-
nisms that enforce TCP-friendly behavior and punish noncon-
formant streams will be necessary as an incentive for
end-to-end congestion control. Appropriate enforcement
mechanisms at routers need to be investigated, and although
initial theoretical approaches to implement scalable and effi-
cient algorithms exist, a great deal of work is necessary before
they can be deployed. Until then, the efficiency of the Inter-
net depends on the collaboration of applications by using
TCP-friendly congestion control protocols.
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